首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   9篇
  61篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有61条查询结果,搜索用时 0 毫秒
31.
The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine.  相似文献   
32.
Recurrent Clostridium difficile infection (CDI) can be effectively treated by infusion of a healthy donor faeces suspension. However, it is unclear what factors determine treatment efficacy. By using a phylogenetic microarray platform, we assessed composition, diversity and dynamics of faecal microbiota before, after and during follow-up of the transplantation from a healthy donor to different patients, to elucidate the mechanism of action of faecal infusion. Global composition and network analysis of the microbiota was performed in faecal samples from nine patients with recurrent CDI. Analyses were performed before and after duodenal donor faeces infusion, and during a follow-up of 10 weeks. The microbiota data were compared with that of the healthy donors. All patients successfully recovered. Their intestinal microbiota changed from a low-diversity diseased state, dominated by Proteobacteria and Bacilli, to a more diverse ecosystem resembling that of healthy donors, dominated by Bacteroidetes and Clostridium groups, including butyrate-producing bacteria. We identified specific multi-species networks and signature microbial groups that were either depleted or restored as a result of the treatment. The changes persisted over time. Comprehensive and deep analyses of the microbiota of patients before and after treatment exposed a therapeutic reset from a diseased state towards a healthy profile. The identification of microbial groups that constitute a niche for C. difficile overgrowth, as well as those driving the reinstallation of a healthy intestinal microbiota, could contribute to the development of biomarkers predicting recurrence and treatment outcome, identifying an optimal microbiota composition that could lead to targeted treatment strategies.  相似文献   
33.

Background

The human gastrointestinal tract contains a complex community of microbes, fulfilling important health-promoting functions. However, this vast complexity of species hampers the assignment of responsible organisms to these functions. Recently, Akkermansia muciniphila, a new species from the deeply branched phylum Verrucomicrobia, was isolated from the human intestinal tract based on its capacity to efficiently use mucus as a carbon and nitrogen source. This anaerobic resident is associated with the protective mucus lining of the intestines.

Methodology/Principal Findings

In order to uncover the functional potential of A. muciniphila, its genome was sequenced and annotated. It was found to contain numerous candidate mucinase-encoding genes, but lacking genes encoding canonical mucus-binding domains. Numerous phage-associated sequences found throughout the genome indicate that viruses have played an important part in the evolution of this species. Furthermore, we mined 37 GI tract metagenomes for the presence, and genetic diversity of Akkermansia sequences. Out of 37, eleven contained 16S ribosomal RNA gene sequences that are >95% identical to that of A. muciniphila. In addition, these libraries were found to contain large amounts of Akkermansia DNA based on average nucleotide identity scores, which indicated in one subject co-colonization by different Akkermansia phylotypes. An additional 12 libraries also contained Akkermansia sequences, making a total of ∼16 Mbp of new Akkermansia pangenomic DNA. The relative abundance of Akkermansia DNA varied between <0.01% to nearly 4% of the assembled metagenomic reads. Finally, by testing a large collection of full length 16S sequences, we find at least eight different representative species in the genus Akkermansia.

Conclusions/Significance

These large repositories allow us to further mine for genetic heterogeneity and species diversity in the genus Akkermansia, providing novel insight towards the functionality of this abundant inhabitant of the human intestinal tract.  相似文献   
34.
35.
36.
37.
38.
AIMS: To evaluate the diversity of the Lactobacillus group in breast milk and the vagina of healthy women and understand their potential role in the infant gut colonization using the 16S rRNA gene approaches. METHODS AND RESULTS: Samples of breast milk, vaginal swabs and infant faeces were aseptically collected from five mothers whose neonates were born by vaginal delivery and another five that had their babies by caesarean section. After polymerase chain reaction (PCR) amplification using Lactobacillus group-specific primers, amplicons were analysed by denaturing gradient gel electrophoresis (DGGE). Clone libraries were constructed to describe the Lactobacillus group diversity. DGGE fingerprints were not related to the delivery method. None of the species detected in vaginal samples were found in breast milk-derived libraries and only few were detected in infant faeces. CONCLUSIONS: The bacterial composition of breast milk and infant faeces is not related to the delivery method. SIGNIFICANCE AND IMPACT OF THE STUDY: It has been suggested that neonates acquire lactobacilli by oral contamination with vaginal strains during delivery; subsequently, newborns would transmit such bacteria to the breast during breastfeeding. However, our findings confirm, at the molecular level that in contrast to the maternal vagina, breast milk seems to constitute a good source of lactobacilli to the infant gut.  相似文献   
39.
The Rhizocephala are considered to be monophyletic due to several synapomorphies in the ontogeny of the cndoparasitic phase. The various types of metamorphosis described in the Rhizocephala are discussed and compared to metamorphosis in the Cirripedia Thoracica and Acrothoracica. In males and females of the suborder Kentrogonida. the cyprid settles and metamorphoses into a new instar, in males the trichogen and in females the infective kentrogon. The kentrogon goes through yet another. incomplete moult associated with the development of the stylet. Within the three kentrogonidan families. the Iernaeodiscid-peltogastrid type of kentrogon differs from the sacculinid type in the mode of attachment to the host. in the complexity of internal anatomy. in the position and penetration of the stylet, and in whether or not the cyprid carapace must be shed prior to penetration of the stylet. In the Akentrogonida metamorphosis never results in a new instar. Where observed (Clistosaccidae and Thompsoniidae). both male and female cyprids settle and penetrate into their substrate (female parasite or new host) with one of the antennules. Using the antennule as a syringe. male cyprids inject spermatogonia while female cyprids injects embryonic cells developing into an endoparasite. By comparison with metamorphosis in the Cirripedia Thoracica and Acrothoracica it is concluded that the presence of a metamorphic moult leading to a post-cyprid instar is plesiomorphic and that the trichogon and kentrogon are homologous with the first metamorphosed juvenile in these outgroups. The abbreviated ontogeny in the Akentrogonida without metamorphic moult and post-cyprid larval instars is considered apomorphic. This contradicts the long-held supposition that the Akentrogonida are the most‘primitive’Rhizocephala and dovetails with new information that this suborder contains many advanced traits. Within the Kentrogonida. the lernacodiseid-peltogastrid type of kentrogon is considered more plesiomorphic than the sacculinid type, which resembles the clistosaccidthompsoniid type in having the antennules involved in the penetration process. The homologization of the kentrogon with a juvenile barnacle indicates that presence of a kentrogon is plesiomorphic within the Rhizocephala and that the Kentrogonida is paraphyletic.  相似文献   
40.
The diversity of the predominant bacteria in the human gastrointestinal tract was studied by using 16S rRNA-based approaches. PCR amplicons of the V6 to V8 regions of fecal 16S rRNA and ribosomal DNA (rDNA) were analyzed by temperature gradient gel electrophoresis (TGGE). TGGE of fecal 16S rDNA amplicons from 16 individuals showed different profiles, with some bands in common. Fecal samples from two individuals were monitored over time and showed remarkably stable profiles over a period of at least 6 months. TGGE profiles derived from 16S rRNA and rDNA amplicons showed similar banding patterns. However, the intensities of bands with similar mobilities differed in some cases, indicating a different contribution to the total active fraction of the prominent fecal bacteria. Most 16S rRNA amplicons in the TGGE pattern of one subject were identified by cloning and sequence analysis. Forty-five of the 78 clones matched 15 bands, and 33 clones did not match any visible band in the TGGE pattern. Nested PCR of amplified 16S rDNA indicated preferential amplification of a sequence corresponding to 12 of the 33 nonmatching clones with similar mobilities in TGGE. The sequences matching 15 bands in the TGGE pattern showed 91.5 to 98.7% homology to sequences derived from different Clostridium clusters. Most of these were related to strains derived from the human intestine. The results indicate that the combination of cloning and TGGE analysis of 16S rDNA amplicons is a reliable approach to monitoring different microbial communities in feces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号