首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   55篇
  613篇
  2023年   10篇
  2022年   13篇
  2021年   21篇
  2020年   18篇
  2019年   11篇
  2018年   27篇
  2017年   13篇
  2016年   33篇
  2015年   41篇
  2014年   38篇
  2013年   37篇
  2012年   47篇
  2011年   40篇
  2010年   32篇
  2009年   31篇
  2008年   36篇
  2007年   24篇
  2006年   17篇
  2005年   17篇
  2004年   15篇
  2003年   31篇
  2002年   16篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1969年   1篇
  1968年   1篇
  1962年   1篇
排序方式: 共有613条查询结果,搜索用时 15 毫秒
61.
The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a “fitness” value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a “cost” element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage fermentation. We found that these combinations compared favorably both with uninoculated silage and with a commercial silage additive. The evolutionary computing methods described here are a convenient and efficient approach for designing silage additives.  相似文献   
62.
Maternally transmitted bacteria of the genus Wolbachia are obligate, intracellular symbionts that are frequently found in insects and cause a diverse array of reproductive manipulations, including cytoplasmic incompatibility, male killing, parthenogenesis, and feminization. Despite the existence of a broad range of scientific interest, many aspects of Wolbachia research have been limited to laboratories with insect-rearing facilities. The inability to culture these bacteria outside of the invertebrate host has also led to the existing bias of Wolbachia research toward infections that occur in host insects that are easily reared. Here, we demonstrate that Wolbachia infections can be simply established, stably maintained, and cryogenically stored in vitro using standard tissue culture techniques. We have examined Wolbachia host range by introducing different Wolbachia types into a single tissue culture. The results show that an Aedes albopictus (Diptera: Culicidae) cell line can support five different Wolbachia infection types derived from Drosophila simulans (Diptera: Drosophilidae), Culex pipiens (Culicidae), and Cadra cautella (Lepidoptera: Phycitidae). These bacterial types include infection types that have been assigned to two of the major Wolbachia clades. As an additional examination of Wolbachia host cell range, we demonstrated that a Wolbachia strain from D. simulans could be established in host insect cell lines derived from A. albopictus, Spodoptera frugiperda (Lepidoptera: Noctuidae), and Drosophila melanogaster. These results will facilitate the development of a Wolbachia stock center, permitting novel approaches for the study of Wolbachia infections and encouraging Wolbachia research in additional laboratories.  相似文献   
63.
Parrots are exceptional among birds for their high levels of exploratory behaviour and manipulatory abilities. It has been argued that foraging method is the prime determinant of a bird's visual field configuration. However, here we argue that the topography of visual fields in parrots is related to their playful dexterity, unique anatomy and particularly the tactile information that is gained through their bill tip organ during object manipulation. We measured the visual fields of Senegal parrots Poicephalus senegalus using the ophthalmoscopic reflex technique and also report some preliminary observations on the bill tip organ in this species. We found that the visual fields of Senegal parrots are unlike those described hitherto in any other bird species, with both a relatively broad frontal binocular field and a near comprehensive field of view around the head. The behavioural implications are discussed and we consider how extractive foraging and object exploration, mediated in part by tactile cues from the bill, has led to the absence of visual coverage of the region below the bill in favour of more comprehensive visual coverage above the head.  相似文献   
64.
Novel bacterial type II topoisomerase inhibitors (NBTIs) constitute a promising new class of antibacterial agents. We report a series of NBTIs with potent anti-staphylococcal activity and diminished hERG inhibition. Dioxane-linked compound 9 demonstrated MICs ≤1?μg/mL against both methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA), accompanied by reduced hERG inhibition as compared to cyclohexane- or piperidine-linked analogs.  相似文献   
65.
A series of 3-(pyridin-2-yl-ethynyl)benzamide negative allosteric modulators of the metabotropic glutamate receptor 5 (mGluR5 NAMs) have been prepared. Starting from HTS hit 1 (IC50: 926 nM), potent mGluR5 NAMs showing excellent potencies (IC50s <50 nM) and good physicochemical profiles were prepared by monitoring LipE values. One compound 26 showed excellent mGluR5 binding (Ki: 21 nM) and antagonism (IC50: 8 nM), an excellent rat PK profile (CL: 12 mL/min/kg, %F: 85) and showed oral activity in a mouse 4-Plate Behavioral model of anxiety (MED: 30 mpk) and a mouse Stress Induced Hyperthermia model of anxiety (MED 17.8 mpk).  相似文献   
66.
67.
This paper examines the functional mechanism of thioxolone, a compound recently identified as a weak inhibitor of human carbonic anhydrase II by Iyer et al. (2006) J. Biomol. Screening 11, 782-791 . Thioxolone lacks sulfonamide, sulfamate, or hydroxamate functional groups that are typically found in therapeutic carbonic anhydrase (CA) inhibitors, such as acetazolamide. Analytical chemistry and biochemical methods were used to investigate the fate of thioxolone upon binding to CA II, including Michaelis-Menten kinetics of 4-nitrophenyl acetate esterase cleavage, liquid chromatography-mass spectrometry (LC-MS), oxygen-18 isotope exchange studies, and X-ray crystallography. Thioxolone is proposed to be a prodrug inhibitor that is cleaved via a CA II zinc-hydroxide mechanism known to catalyze the hydrolysis of esters. When thioxolone binds in the active site of CA II, it is cleaved and forms 4-mercaptobenzene-1,3-diol via the intermediate S-(2,4-thiophenyl)hydrogen thiocarbonate. The esterase cleavage product binds to the zinc active site via the thiol group and is therefore the active CA inhibitor, while the intermediate is located at the rim of the active-site cavity. The time-dependence of this inhibition reaction was investigated in detail. Because this type of prodrug inhibitor mechanism depends on cleavage of ester bonds, this class of inhibitors may have advantages over sulfonamides in determining isozyme specificity. A preliminary structure-activity relationship study with a series of structural analogues of thioxolone yielded similar estimates of inhibition constants for most compounds, although two compounds with bromine groups at the C1 carbon of thioxolone were not inhibitory, suggesting a possible steric effect.  相似文献   
68.
Centrioles and basal bodies are discrete structures composed of a cylinder of nine microtubule triplets and associated proteins. Metazoan centrioles can be found at mitotic spindle poles and are called basal bodies when used to organize microtubules to form the core structure of flagella. Naegleria gruberi, a unicellular eukaryote, grows as an amoeba that lacks a cytoplasmic microtubule cytoskeleton. When stressed, Naegleria rapidly (and synchronously) differentiates into a flagellate, forming a complete cytoplasmic cytoskeleton de novo, including two basal bodies and flagella. Here, we show that Naegleria has genes encoding conserved centriole proteins. Using novel antibodies, we describe the localization of three centrosomal protein homologs (SAS-6, γ-tubulin, and centrin-1) during the assembly of the flagellate microtubule cytoskeleton. We also used these antibodies to show that Naegleria expresses the proteins in the same order as their incorporation into basal bodies, with SAS-6 localizing first, followed by centrin and finally γ-tubulin. The similarities between basal body assembly in Naegleria and centriole assembly in animals indicate that mechanisms of assembly, as well as structure, have been conserved throughout eukaryotic evolution.The beautiful and enigmatic pinwheel structures of centrioles and basal bodies have captured the imaginations of cell biologists for over a century. These small (∼1-μm) organelles are composed largely of a cylinder of nine microtubule triplets (11). The surrounding amorphous material harbors the microtubule-organizing activities of the centrosome, placing centrioles at the hub of the microtubule cytoskeleton. Metazoan centrosomes define mitotic spindle poles, and their centrioles are called basal bodies when used to form cilia (29). Moreover, in 1900 Meeves showed in a series of classical experiments that centrioles and basal bodies are interconvertible structures (34). Centrioles must replicate exactly once per cell cycle, as duplication errors can lead to problems with chromosome segregation and cell morphology (17).Virtually all animal cells have a pair of centrosomal centrioles that duplicate via “templated” assembly, with the new centriole developing perpendicular and attached to a preexisting centriole (4). Centrioles can also be formed “de novo” in cytosol devoid of preexisting centrioles and basal bodies (20). In addition to many in vivo examples (20), terminally differentiated fibroblasts held in S phase can assemble centrioles de novo after removal of preexisting centrioles by laser microsurgery (15).The amoeboflagellate Naegleria gruberi grows as an amoeba that completely lacks a cytoplasmic microtubule cytoskeleton. However, when exposed to stressors such as temperature, osmotic, or pH changes, Naegleria rapidly differentiates into a flagellate, forming a complete cytoplasmic cytoskeleton from scratch, including two basal bodies and flagella (8). This differentiation occurs synchronously, with approximately 90% of cells growing visible flagella in a 15-min window (T50 = 65 min after initiation of differentiation). As part of this differentiation, Naegleria has been shown to assemble the pinwheel structure of the basal bodies de novo, about 10 min before flagella are seen (11).Two centrosomal proteins that have been studied during Naegleria differentiation are centrin and γ-tubulin. Centrin is a calcium-binding phosphoprotein that is an integral component of the wall and lumen of basal bodies and of the pericentriolar lattice in many organisms (4, 19). During differentiation, Naegleria induces synthesis of centrin protein, which then localizes specifically to basal body structures throughout differentiation (18). γ-Tubulin is a general microtubule nucleation factor that localizes to microtubule-organizing centers (MTOCs) of many types. Surprisingly, Naegleria''s γ-tubulin homolog has been reported to localize to basal body precursor complexes and then move to the other end of the cell before disappearing completely (32).A third protein that has come under recent scrutiny for its role in centriole duplication is SAS-6, a functionally conserved coiled-coil protein required for the formation of diverse basal body precursor structures (7, 21,23, 31). In Caenorhabditis elegans and Drosophila melanogaster, SAS-6 is recruited at S phase to form the “central tube,” a cylindrical basal body precursor that lacks microtubules (22, 23). SAS-6 is also required for the formation of the flat ring or cartwheel with nine radiating spokes, which is the first structure to be formed in the Chlamydomonas basal body (21).To determine if Naegleria is likely to have typical basal body components, we identified conserved basal body genes in the Naegleria genome. We also made antibodies to and localized Naegleria''s homologs of SAS-6 and γ-tubulin. Finally, we have determined the order of expression and incorporation of these proteins, as well as centrin, during Naegleria de novo basal body assembly.  相似文献   
69.
Macrophage migration into injured or infected tissue is a key aspect in the pathophysiology of many diseases where inflammation is a driving factor. Membrane‐type‐1 matrix metalloproteinase (MT1‐MMP) cleaves extracellular matrix components to facilitate invasion. Here we show that, unlike the constitutive MT1‐MMP surface recycling seen in cancer cells, unactivated macrophages express low levels of MT1‐MMP. Upon lipopolysaccharide (LPS) activation, MT1‐MMP synthesis dramatically increases 10‐fold at the surface by 15 hours. MT1‐MMP is trafficked from the Golgi complex to the surface via late endosomes/lysosomes in a pathway regulated by the late endosome/lysosome R‐SNAREs VAMP7 and VAMP8. These form two separate complexes with the surface Q‐SNARE complex Stx4/SNAP23 to regulate MT1‐MMP delivery to the plasma membrane. Loss of either one of these SNAREs leads to a reduction in surface MT1‐MMP, gelatinase activity and reduced invasion. Thus, inhibiting MT1‐MMP transport through this pathway could reduce macrophage migration and the resulting inflammation.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号