首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   26篇
  2022年   2篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   4篇
  2014年   10篇
  2013年   16篇
  2012年   13篇
  2011年   9篇
  2010年   12篇
  2009年   11篇
  2008年   16篇
  2007年   6篇
  2006年   4篇
  2005年   8篇
  2004年   3篇
  2003年   10篇
  2002年   10篇
  2001年   8篇
  2000年   3篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   3篇
  1989年   2篇
  1988年   4篇
  1986年   3篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1968年   2篇
  1967年   4篇
  1918年   1篇
  1916年   1篇
  1914年   1篇
  1912年   1篇
  1911年   2篇
  1905年   1篇
排序方式: 共有281条查询结果,搜索用时 15 毫秒
21.
Aim Explanations of biogeographic diversity patterns have emphasized the role of large‐scale processes that determine species pools, whereas explanations of local patterns have not. We address the hypothesis that local diversity patterns are also primarily dependent on the size of the available species pools, which are expected to be large when the particular habitat type has been evolutionary more abundant, or in unproductive habitats due to shorter generation time and hence higher diversification rates. Location The Canary Islands. Methods We determined the geographic distribution and habitat requirements of all native vascular plant species in the Canary Islands. Species pools for each habitat type on particular islands were further split into two categories according to origin: either originating due to local diversification or due to natural immigration. The dependence of historical diversification and diversification rate on habitat type, area, age, altitude and distance to the mainland was tested with general linear mixed models weighed according to the Akaike information criterion. Results The largest portion of the local variation in plant species diversity was attributed to the historic (pre‐human) habitat area, although island age was also important. The diversification rate was higher in unproductive habitats of coastal scrub and summit vegetation. Main conclusion Our study supports the species pool hypothesis, demonstrating that natural local patterns of species diversity in different habitats mirror the abundance of those particular habitats in evolutionary history. It also supports the community‐level birth rate hypothesis, claiming that stressful conditions result in higher diversification rates. We conclude that much of the observed local variation in plant diversity can be attributed to the differing sizes of species pools evolved under particular habitat conditions, and that historic parameters are far more important determinants of local diversity than suggested by ecological theory.  相似文献   
22.
Understanding how communities of living organisms assemble has been a central question in ecology since the early days of the discipline. Disentangling the different processes involved in community assembly is not only interesting in itself but also crucial for an understanding of how communities will behave under future environmental scenarios. The traditional concept of assembly rules reflects the notion that species do not co‐occur randomly but are restricted in their co‐occurrence by interspecific competition. This concept can be redefined in a more general framework where the co‐occurrence of species is a product of chance, historical patterns of speciation and migration, dispersal, abiotic environmental factors, and biotic interactions, with none of these processes being mutually exclusive. Here we present a survey and meta‐analyses of 59 papers that compare observed patterns in plant communities with null models simulating random patterns of species assembly. According to the type of data under study and the different methods that are applied to detect community assembly, we distinguish four main types of approach in the published literature: species co‐occurrence, niche limitation, guild proportionality and limiting similarity. Results from our meta‐analyses suggest that non‐random co‐occurrence of plant species is not a widespread phenomenon. However, whether this finding reflects the individualistic nature of plant communities or is caused by methodological shortcomings associated with the studies considered cannot be discerned from the available metadata. We advocate that more thorough surveys be conducted using a set of standardized methods to test for the existence of assembly rules in data sets spanning larger biological and geographical scales than have been considered until now. We underpin this general advice with guidelines that should be considered in future assembly rules research. This will enable us to draw more accurate and general conclusions about the non‐random aspect of assembly in plant communities.  相似文献   
23.
Long-distance dispersal events are irregular and their role in shaping plant diversity is often discussed and modeled but rarely studied experimentally. We mimicked long-distance dispersal experimentally by sowing eleven exotic and fourteen native species into a calcareous grassland community in Estonia. Exotic species were randomly chosen from the collection of 500 herbaceous species in the Botanical Garden of the Tartu University. All exotic species were able to complete their life-cycles under the climatic and edaphic conditions in the garden. Native species originated from open dry calcareous habitats in the surroundings of the study site, but did not occur in the experimental grassland. Seven exotic species and seven native species established during the first year. In the third year, there were still three exotic species with five premature individuals, and three sown native species with sixteen individuals in the plots. These results show that long-distance dispersal both within and between regions may have an impact on species composition in target plant communities. If relatively the best established exotic speciesPhyteuma scheuchzeri would be classified as casual, one may conclude that transition among introduction and casual stages corresponds to ten’ rule. The species richness of seedlings, taking both local and sown species into account, was higher in plots with higher native established plant species richness.  相似文献   
24.
New staining techniques continue to be introduced, and older ones continue to be used and improved. Several factors control specificity, selectivity and visibility of the end product in any procedure using dyes, fluorochromes, inorganic reagents or histochemical reactions applied to sections or similar preparations. Local concentration of the tissue target often determines the intensity of the observed color, as does the fine structure within the object being stained, which may facilitate or impede diffusion of dyes and other reagents. Several contributions to affinity control the specificity of staining. These include electrical forces, which result in accumulation of dye ions in regions of oppositely charged tissue polyions. Weaker short-range attractions (hydrogen bonding, van der Waals forces or hydrophobic bonding, depending on the solvent) hold dyes ions and histochemical end products in contact with their macromolecular substrates. Nonionic forces can also increase visibility of stained sites by causing aggregation of dye molecules. Covalent bonds between dye and tissue result in the strongest binding, such as in methods using Schiff's reagent and possibly also some mordant dyes. The rate at which a reagent gains access to or is removed from targets in a section or other specimen affect what is stained, especially when more then one dye is used, together or sequentially. Rate-controlled staining is greatly influenced by the presence and type of embedding medium, such as a resin, that infiltrates the tissue. The rates of chemical reactions are major determinants of outcome in many histochemical techniques. Selective staining of different organelles within living cells is accomplished mainly with fluorochromes and is controlled by mechanisms different from those that apply to fixed tissues. Quantitative structure-activity relations (QSAR) of such reagents can be derived from such molecular properties as hydrophilic-hydrophobic balance, extent of conjugated bond systems, acid-base properties and ionic charge. The QSAR correlates with staining of endoplasmic reticulum, lysosomes, mitochondria, DNA, or the plasma membranes of living cells.  相似文献   
25.
Abstract. Extensive areas in the mountain grasslands of central Argentina are heavily invaded by alien species from Europe. A decrease in biodiversity and a loss of palatable species is also observed. The invasibility of the tall‐grass mountain grassland community was investigated in an experiment of factorial design. Six alien species which are widely distributed in the region were sown in plots where soil disturbance, above‐ground biomass removal by cutting and burning were used as treatments. Alien species did not establish in undisturbed plots. All three types of disturbances increased the number and cover of alien species; the effects of soil disturbance and biomass removal was cumulative. Cirsium vulgare and Oenothera erythrosepala were the most efficient alien colonizers. In conditions where disturbances did not continue the cover of aliens started to decrease in the second year, by the end of the third season, only a few adults were established. Consequently, disturbances are needed to maintain alien populations in tall‐grass mountain grasslands. Burning also increased the species richness of native species. We conclude that an efficient way to control the distribution of alien species is to decrease grazing pressure while burning as a traditional management tool may be continued.  相似文献   
26.
27.
Summary Exclusive selection for yield raises, the harvest index of self-pollinated crops with little or no gain in total bipmass. In addition to selection for yield, it is suggested that efficient breeding for higher yield requires simultaneous selection for yield's three major, genetically controlled physiological components. The following are needed: (1) a superior rate of biomass accumulation. (2) a superior rate of actual yield accumulation in order to acquire a high harvest index, and (3) a time to harvest maturity that is neither shorter nor longer than the duration of the growing season. That duration is provided by the environment, which is the fourth major determinant of yield. Simultaneous selection is required because genetically established interconnections among the three major physiological components cause: (a) a correlation between the harvest index and days to maturity that is usually negative; (b) a correlation between the harvest index and total biomass that is often negative, and (c) a correlation between biomass and days to maturity that is usually positive. All three physiological components and the correlations among them can be quantified by yield system analysis (YSA) of yield trials. An additive main effects and multiplicative interaction (AMMI) statistical analysis can separate and quantify the genotype × environment interaction (G × E) effect on yield and on each physiological component that is caused by each genotype and by the different environment of each yield trial. The use of yield trials to select parents which have the highest rates of accumulation of both biomass and yield, in addition to selecting for the G × E that is specifically adapted to the site can accelerate advance toward the highest potential yield at each geographical site. Higher yield for many sites will raise average regional yield. Higher yield for multiple regions and continents will raise average yield on a world-wide basis. Genetic and physiological bases for lack of indirect selection for biomass from exclusive selection for yield are explained.  相似文献   
28.
Although sexuality is considered evolutionarily progressive, clonality is very common in plants and the prevailing means of reproduction in several community types. I discuss what could be the forces that have influenced the selection among sexual versus non-sexual reproduction at community level. I propose that, among others, the probability of self-competition must have been one of the key factors. The probability of meeting one’s own genes for wasteful competition is higher in communities where clonality prevails (and relatively high mean intra-species relatedness is expected), and higher in communities with low species diversity. On the other hand, lower diversity indicates a higher average fitness of species since the (finite) total pool of resources is distributed among fewer population with high density. I show, using four community types with contrasting diversity and clonality that community fitness (average fitness in the assemblage of species) can be expressed as the product of two variables––anti-diversity and degree of sexuality.  相似文献   
29.
30.
During embryogenesis and maturation of an embryo the tissuescovering it produce phenolic compounds the localization of whichchanges during maturation of the embryo. In the ovary containinga globular embryo, phenolics are located in the epidermis ofthe integumentum externum and the innermost layer of the integumentuminternum. In the ovule at the stage at which heart- and torpedo-shapedembryos are present, phenolic compounds are visible in the stellarcells, the innermost cells of the integumentum internum andthe endosperm. In hard, green seeds, after the integumentuminternum and layers over the stellar cells gradually disappear,the remaining tissue contains cell walls impregnated with phenolics.Mature, black seeds contain only one distinct layer of cells—stellarcells, which, like the other compressed cell walls, are impregnatedwith phenolics. In this way they constitute a barrier betweenthe embryo and its environment.Copyright 1994, 1999 AcademicPress Brassica napus, seed coat, integumentum, phenolic compounds  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号