首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
  72篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1965年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
51.
Direct determination of muscle fiber composition is invasive and expensive, with indirect methods also requiring specialist resources and expertise. Performing resistance exercises at 80% 1RM is suggested as a means of indirectly estimating muscle fiber composition, though this hypothesis has never been validated against a direct method. The aim of the study was to investigate the relationship between the number of completed repetitions at 80% 1RM of back squat exercise and muscle fiber composition. Thirty recreationally active participants’ (10 females, 20 males) 1RM back squat load was determined, before the number of consecutive repetitions at 80% 1RM was recorded. The relationship between the number of repetitions and the percentage of fast-twitch fibers from vastus lateralis was investigated. The number of completed repetitions ranged from 5 to 15 and was independent of sex, age, 1RM, training frequency, training type, training experience, BMI or muscle fiber cross-sectional area. The percentage of fast-twitch muscle fibers was inversely correlated with the number of repetitions completed (r = –0.38, P = 0.039). Participants achieving 5 to 8 repetitions (n = 10) had significantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%, P = 0.013) than those achieving 11–15 repetitions (n = 11). The remaining participants achieved 9 or 10 repetitions (n = 9) and on average had equal proportion of fast- and slow-twitch muscle fibers. In conclusion, the number of completed repetitions at 80% of 1RM is moderately correlated with muscle fiber composition.  相似文献   
52.
A novel ketoreductase isolated from Zygosaccharomyces rouxii catalyzes the asymmetric reduction of selected ketone substrates of commercial importance. The 37.8-kDa ketoreductase was purified more than 300-fold to > 95% homogeneity from whole cells with a 30% activity yield. The ketoreductase functions as a monomer with an apparent Km for 3,4-methylenedioxyphenyl acetone of 2.9 mM and a Km for NADPH of 23.5 microM. The enzyme is able to effectively reduce alpha-ketolactones, alpha-ketolactams, and diketones. Inhibition is observed in the presence of diethyl pyrocarbonate, suggesting that a histidine is crucial for catalysis. The 1.0-kb ketoreductase gene was cloned and sequenced from a Z. rouxii cDNA library using a degenerate primer to the N-terminal sequence of the purified protein. Furthermore, it was expressed in both Escherichia coli and Pichia pastoris and shown to be active. Substrate specificity, lack of a catalytic metal, and extent of protein sequence identity to known reductases suggests that the enzyme falls into the carbonyl reductase enzyme class.  相似文献   
53.
The contribution of nitric oxide (NO) to the pathophysiology of asthma remains incompletely defined despite its established pro- and anti-inflammatory effects. Induction of the inducible nitric oxide synthase (iNOS), arginase, and superoxide pathways is correlated with increased airway hyperresponsiveness in asthmatic subjects. To determine the contributions of these pathways in proximal and distal airways, we compared bronchial wash (BW) to traditional bronchoalveolar lavage (BAL) for measurements of reactive nitrogen/oxygen species, arginase activation, and cytokine/chemokine levels in asthmatic and normal subjects. Levels of NO were preferentially elevated in the BAL, demonstrating higher level NOS activation in the distal airway compartment of asthmatic subjects. In contrast, DHE(+) cells, which have the potential to generate reactive oxygen species, were increased in both proximal and distal airway compartments of asthmatics compared to controls. Different patterns of cytokines and chemokines were observed, with a predominance of epithelial cell-associated mediators in the BW compared to macrophage/monocyte-derived mediators in the BAL of asthmatic subjects. Our study demonstrates differential production of reactive species and soluble mediators within the distal airways compared to the proximal airways in asthma. These results indicate that cellular mechanisms are activated in the distal airways of asthmatics and must be considered in the development of therapeutic strategies for this chronic inflammatory disorder.  相似文献   
54.
The properties of succinate uptake in succinate-grown Kluyveromyces cells were examined. The rate of succinate transport at 15C exhibits an approximate V-max of 1.2 mumol times h-1 times mg-1 dry weight of cells and an apparent K-m of 18 muM. The uptake process appears to be tightly coupled to metabolism. L-Malate, fumarate, and alpha-ketoglutarate were the only other dicarboxylates tested, which were found to inhibit succinate transport. The aggreement between the order of inhibition of succinate transport by these dicarboxylates and their rates of uptake, as well as the competitive nature of the inhibition are all consistent with the existence of a common carrier system showing specificity for dicarboxylates of the TCA cycle. Cells transferred from succinate to glucose medium rapidly lose their ability to transport succinate. Glucose-grown cells also exhibit an inability to oxidize dicarboxylates or to use them for growth without a very long lag. The dicarboxylate uptake system, therefore, appears to be subject to a strong catabolite repression. The depression of the succinate transport system requires the presence of succinate, as well as low concentrations of glucose.  相似文献   
55.
56.
An inability of neutrophils to eliminate invading microorganisms is frequently associated with severe infection and may contribute to the high mortality rates associated with sepsis. In the present studies, we examined whether metformin and other 5′ adenosine monophosphate-activated protein kinase (AMPK) activators affect neutrophil motility, phagocytosis and bacterial killing. We found that activation of AMPK enhanced neutrophil chemotaxis in vitro and in vivo, and also counteracted the inhibition of chemotaxis induced by exposure of neutrophils to lipopolysaccharide (LPS). In contrast, small interfering RNA (siRNA)-mediated knockdown of AMPKα1 or blockade of AMPK activation through treatment of neutrophils with the AMPK inhibitor compound C diminished neutrophil chemotaxis. In addition to their effects on chemotaxis, treatment of neutrophils with metformin or aminoimidazole carboxamide ribonucleotide (AICAR) improved phagocytosis and bacterial killing, including more efficient eradication of bacteria in a mouse model of peritonitis-induced sepsis. Immunocytochemistry showed that, in contrast to LPS, metformin or AICAR induced robust actin polymerization and distinct formation of neutrophil leading edges. Although LPS diminished AMPK phosphorylation, metformin or AICAR was able to partially decrease the effects of LPS/toll-like receptor 4 (TLR4) engagement on downstream signaling events, particularly LPS-induced IκBα degradation. The IκB kinase (IKK) inhibitor PS-1145 diminished IκBα degradation and also prevented LPS-induced inhibition of chemotaxis. These results suggest that AMPK activation with clinically approved agents, such as metformin, may facilitate bacterial eradication in sepsis and other inflammatory conditions associated with inhibition of neutrophil activation and chemotaxis.  相似文献   
57.
Mitochondrial dysfunction has been associated with age‐related diseases, including idiopathic pulmonary fibrosis (IPF). We provide evidence that implicates chronic elevation of the mitochondrial anion carrier protein, uncoupling protein‐2 (UCP2), in increased generation of reactive oxygen species, altered redox state and cellular bioenergetics, impaired fatty acid oxidation, and induction of myofibroblast senescence. This pro‐oxidant senescence reprogramming occurs in concert with conventional actions of UCP2 as an uncoupler of oxidative phosphorylation with dissipation of the mitochondrial membrane potential. UCP2 is highly expressed in human IPF lung myofibroblasts and in aged fibroblasts. In an aging murine model of lung fibrosis, the in vivo silencing of UCP2 induces fibrosis regression. These studies indicate a pro‐fibrotic function of UCP2 in chronic lung disease and support its therapeutic targeting in age‐related diseases associated with impaired tissue regeneration and organ fibrosis.  相似文献   
58.
59.
Restriction endonucleases serve as a very good model for studying specific protein–DNA interaction. MmeI is a very interesting restriction endonuclease, but although it is useful in Serial Analysis of Gene Expression, still very little is known about the mechanism of its interaction with DNA. MmeI is a unique enzyme as besides cleaving DNA it also methylates specific sequence. For endonucleolytic activity MmeI requires Mg(II) and S-adenosyl-l-methionine (AdoMet). AdoMet is a methyl donor in the methylation reaction, but its requirement for DNA cleavage remains unclear. In the present article we investigated MmeI interaction with DNA with the use of numerous methods. Our electrophoretic mobility shift assay revealed formation of two types of specific protein–DNA complexes. We speculate that faster migrating complex consists of one protein molecule and one DNA fragment whereas, slower migrating complex, which appears in the presence of AdoMet, may be a dimer or multimer form of MmeI interacting with specific DNA. Additionally, using spectrophotometric measurements we showed that in the presence of AdoMet, MmeI protein undergoes conformational changes. We think that such change in the enzyme structure, upon addition of AdoMet, may enhance its specific binding to DNA. In the absence of AdoMet MmeI binds DNA to the much lower extent.  相似文献   
60.
The HLA-DR beta gene, used as a hybridization probe, detects RFLPs that correlate with HLA-DR specificities. Using genomic DNA from more than 200 individuals, we have carried out a population study with a cDNA probe for the DR beta chain, which, under appropriate conditions, does not cross-hybridize with genes from other HLA-D subregions (e.g., DP and DQ). We first assessed the correspondence between serologically defined HLA-DR types and DNA patterns obtained after digestion with TaqI and found that DNA patterns allowed us to identify most specificities. Only two pairs of antigens are not distinguishable: with the DR beta probe alone we cannot distinguish DR3 from DRw6 or DR7 from DRw9. However, the correct assignment can always be made for the first pair by hybridizing the same digests with a DQ alpha or DQ beta probe. Thus DR typing from the DNA patterns is practical and accurate. We also looked for serologically undetectable subtypes. RFLPs revealed high-frequency subtypes for the specificities DR 2, 3, 5, w6, 7, and w9. Some of these are more accurately viewed as variant haplotypes, since the relevant variation is probably not at the DR beta locus that determines the serological specificities but rather at other closely linked and highly homologous DR beta loci such as DR beta-III. Nevertheless, the existence of variant haplotypes for so many specificities indicates a wealth of polymorphic variation beyond that detected serologically and provides more specific markers for studies of various diseases associated with HLA-DR specificities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号