首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19158篇
  免费   1422篇
  国内免费   1520篇
  2024年   36篇
  2023年   291篇
  2022年   602篇
  2021年   1100篇
  2020年   681篇
  2019年   933篇
  2018年   812篇
  2017年   561篇
  2016年   880篇
  2015年   1162篇
  2014年   1465篇
  2013年   1526篇
  2012年   1817篇
  2011年   1570篇
  2010年   989篇
  2009年   850篇
  2008年   943篇
  2007年   811篇
  2006年   660篇
  2005年   582篇
  2004年   486篇
  2003年   441篇
  2002年   389篇
  2001年   285篇
  2000年   293篇
  1999年   306篇
  1998年   195篇
  1997年   202篇
  1996年   190篇
  1995年   152篇
  1994年   137篇
  1993年   96篇
  1992年   141篇
  1991年   114篇
  1990年   100篇
  1989年   77篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   41篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
241.
It remains unclear whether the necessity of calcified mellitus induced by high inorganic phosphate (Pi) is required and the roles of autophagy plays in aldosterone (Aldo)‐enhanced vascular calcification (VC) and vascular smooth muscle cell (VSMC) osteogenic differentiation. In the present study, we found that Aldo enhanced VC both in vivo and in vitro only in the presence of high Pi, alongside with increased expression of VSMC osteogenic proteins (BMP2, Runx2 and OCN) and decreased expression of VSMC contractile proteins (α‐SMA, SM22α and smoothelin). However, these effects were blocked by mineralocorticoid receptor inhibitor, spironolactone. In addition, the stimulatory effects of Aldo on VSMC calcification were further accelerated by the autophagy inhibitor, 3‐MA, and were counteracted by the autophagy inducer, rapamycin. Moreover, inhibiting adenosine monophosphate‐activated protein kinase (AMPK) by Compound C attenuated Aldo/MR‐enhanced VC. These results suggested that Aldo facilitates high Pi‐induced VSMC osteogenic phenotypic switch and calcification through MR‐mediated signalling pathways that involve AMPK‐dependent autophagy, which provided new insights into Aldo excess‐associated VC in various settings.  相似文献   
242.
To explore how alterations in the phosphodiesterase type 5 (PDE5) signalling pathway and oxidative stress correlate with changes in the expression of relaxation and contraction molecules and erectile dysfunction (ED) in the corpus cavernosum smooth muscle (CCSM) of spontaneously hypertensive rats (SHR). In this study, SHR and Wistar‐Kyoto (WKY) rats were used. Erectile function was determined by apomorphine test and electrical stimulation (ES) of cavernous nerve. Masson''s trichrome staining and confocal microscopy were performed. Nitric oxide synthase (NOS), PDE5, phosphorylated‐PDE5 and α1‐adrenergic receptor (α1AR) were determined by RT‐PCR and Western blotting while oxidative stress in CC was determined by colorimetric analysis. SHR exhibited obvious ED. CC of SHR showed less SM but more collagen fibres. The expression of NOS isoforms in SHR was significantly decreased while all α1AR isoforms were increased. In addition, PDE5 and phosphorylated‐PDE5 were down‐regulated and its activity attenuated in the hypertensive rats. Meanwhile, the SHR group suffered oxidative stress, which may be modulated by endoplasmic reticulum stress and NADPH oxidase up‐regulation. Dysregulation of NOS and α1AR, histological changes and oxidative stress in CC may be associated with the pathophysiology of hypertension‐induced ED. In addition, PDE5 down‐regulation may lead to the decreased efficacy of PDE5 inhibitors in some hypertensive ED patients and treatment of oxidative stress could be used as a new therapeutic target for this type of ED.  相似文献   
243.
Oral squamous cell carcinoma (OSCC) is aggressive accompanied with poor prognosis. We previously isolated the most invasive cells resembling the invasive tumour front by microfluidic technology and explored their differentially expressed microRNAs (miRNAs) in our previous work. Here, we verified the miR‐29b‐3p as a guarder that suppressed migration and invasion of OSCC cells and was down‐regulated in the most invasive cells. Besides that, the invasion suppression role of miR‐29b‐3p was achieved through the IL32/AKT pathway. Thus, miR‐29b‐3p and IL32 might serve as therapeutic targets for blocking the progression and improving the outcome of OSCC.  相似文献   
244.
245.
Chronic pancreatitis (CP) is characterized by persistent inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Currently, the clinical therapeutic scheme of CP is mainly symptomatic treatment including pancreatic enzyme replacement, glycaemic control and nutritional support therapy, lacking of specific therapeutic drugs for prevention and suppression of inflammation and fibrosis aggravating in CP. Here, we investigated the effect of isoliquiritigenin (ILG), a chalcone‐type dietary compound derived from licorice, on pancreatic fibrosis and inflammation in a model of caerulein‐induced murine CP, and the results indicated that ILG notably alleviated pancreatic fibrosis and infiltration of macrophages. Further in vitro studies in human pancreatic stellate cells (hPSCs) showed that ILG exerted significant inhibition on the proliferation and activation of hPSCs, which may be due to negative regulation of the ERK1/2 and JNK1/2 activities. Moreover, ILG significantly restrained the M1 polarization of macrophages (RAW 264.7) via attenuation of the NF‐κB signalling pathway, whereas the M2 polarization was hardly affected. These findings indicated that ILG might be a potential anti‐inflammatory and anti‐fibrotic therapeutic agent for CP.  相似文献   
246.
Osteolytic skeletal disorders are caused by an imbalance in the osteoclast and osteoblast function. Suppressing the differentiation and resorptive function of osteoclast is a key strategy for treating osteolytic diseases. Dracorhodin perchlorate (D.P), an active component from dragon blood resin, has been used for facilitating wound healing and anti-cancer treatments. In this study, we determined the effect of D.P on osteoclast differentiation and function. We have found that D.P inhibited RANKL-induced osteoclast formation and resorbed pits of hydroxyapatite-coated plate in a dose-dependent manner. D.P also disrupted the formation of intact actin-rich podosome structures in mature osteoclasts and inhibited osteoclast-specific gene and protein expressions. Further, D.P was able to suppress RANKL-activated JNK, NF-κB and Ca2+ signalling pathways and reduces the expression level of NFATc1 as well as the nucleus translocation of NFATc1. Overall, these results indicated a potential therapeutic effect of D.P on osteoclast-related conditions.  相似文献   
247.
The balance between bone formation and bone resorption is closely related to bone homeostasis. Osteoclasts, originating from the monocyte/macrophage lineage, are the only cell type possessing bone resorption ability. Osteoclast overactivity is thought to be the major reason underlying osteoclast‐related osteolytic problems, such as Paget's disease, aseptic loosening of prostheses and inflammatory osteolysis; therefore, disruption of osteoclastogenesis is considered a crucial treatment option for these issues. WKYMVm, a synthetic peptide, which is a potent FPR2 agonist, exerts an immunoregulatory effect. This peptide inhibits the production of inflammatory cytokines, such as (IL)‐1β and TNF‐α, thus regulating inflammation. However, there are only few reports on the role of WKYMVm and FPR2 in osteoclast cytology. In the current study, we found that WKYMVm negatively regulates RANKL‐ and lipopolysaccharide (LPS)‐induced osteoclast differentiation and maturation in vitro and alleviates LPS‐induced osteolysis in animal models. WKYMVm down‐regulated the expression of osteoclast marker genes and resorption activity. Furthermore, WKYMVm inhibited osteoclastogenesis directly through reducing the phosphorylation of STAT3 and NF‐kB and indirectly through the CD9/gp130/STAT3 pathway. In conclusion, our findings demonstrated the potential medicinal value of WKYMVm for the treatment of inflammatory osteolysis.  相似文献   
248.
249.
Adenomyosis is also called internal endometriosis and affects about 20% of reproductive‐aged women. It seriously reduces life quality of patients because current drug therapies face with numerous challenges. Long‐term clinical application of mifepristone exhibits wonderful therapeutic effects with mild side‐effects in many disorders since 1982. Since adenomyosis is a refractory disease, we investigate whether mifepristone can be applied in the treatment of adenomyosis. In this study, we investigated the direct effects of mifepristone on human primary eutopic endometrial epithelial cells and stromal cells in adenomyosis. We found that mifepristone causes cell cycle arrest through inhibiting CDK1 and CDK2 expressions and induces cell apoptosis via the mitochondria‐dependent signalling pathway in endometrial epithelial cells and stromal cells of adenomyosis. Furthermore, mifepristone inhibits the migration of endometrial epithelial cells and stromal cells through decreasing CXCR4 expression and restricts the invasion of endometrial epithelial cells via suppression of epithelial‐mesenchymal transition in adenomyosis. We also found that mifepristone treatment decreases the uterine volume, CA125 concentration and increases the haemoglobin concentration in serum for adenomyosis patients. Therefore, we demonstrate that mifepristone could serve as a novel therapeutic drug in the treatment of adenomyosis, and therefore, the old dog can do a new trick.  相似文献   
250.
Numerous studies have demonstrated that thioredoxin-interacting protein (TXNIP) expression of peripheral blood leucocytes is increased in coronary artery disease (CAD). However, the molecular mechanism of this phenomenon remained unclear. DNA methylation plays important roles in the regulation of gene expression. Therefore, we speculated there might be a close association between the expression of TXNIP and methylation. In this study, we found that compared with controls, DNA methylation at cg19693031 was decreased in CAD, while mRNA expressions of TXNIP and inflammatory factors, NLRP3, IL-1β, IL-18, were increased. Methylation at cg19693031 was negatively associated with TXNIP expression in the cohort, THP-1 and macrophages/foam cells. Furthermore, Transwell assay and co-cultured adhesion assay were performed to investigate functions of TXNIP on the migration of THP-1 or the adhesion of THP-1 on the surface of endothelial cells, respectively. Notably, overexpressed TXNIP promoted the migration and adhesion of THP-1 cells and expressions of NLRP3, IL-18 and IL-1β. Oppositely, knock-down TXNIP inhibited the migration and adhesion of THP-1 and expressions of NLRP3, IL-18. In conclusion, increased TXNIP expression, related to cg19693031 demethylation orientates monocytes towards an inflammatory status through the NLRP3 inflammasome pathway involved in the development of CAD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号