首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   11篇
  119篇
  2022年   4篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   1篇
  2006年   6篇
  2005年   10篇
  2004年   3篇
  2003年   7篇
  2002年   10篇
  2001年   2篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
41.
Modulation of A-type voltage-gated K+ channels can produce plastic changes in neuronal signaling. It was shown that the delayed-rectifier Kv1.1 channel can be converted to A-type upon association with Kvbeta1.1 subunits; the conversion is only partial and is modulated by phosphorylation and microfilaments. Here we show that, in Xenopus oocytes, expression of Gbeta1gamma2 subunits concomitantly with the channel (composed of Kv1.1 and Kvbeta1.1 subunits), but not after the channel's expression in the plasma membrane, increases the extent of conversion to A-type. Conversely, scavenging endogenous Gbetagamma by co-expression of the C-terminal fragment of the beta-adrenergic receptor kinase reduces the extent of conversion to A-type. The effect of Gbetagamma co-expression is occluded by treatment with dihydrocytochalasin B, a microfilament-disrupting agent shown previously by us to enhance the extent of conversion to A-type, and by overexpression of Kvbeta1.1. Gbeta1gamma2 subunits interact directly with GST fusion fragments of Kv1.1 and Kvbeta1.1. Co-expression of Gbeta1gamma2 causes co-immunoprecipitation with Kv1.1 of more Kvbeta1.1 subunits. Thus, we suggest that Gbeta1gamma2 directly affects the interaction between Kv1.1 and Kvbeta1.1 during channel assembly which, in turn, disrupts the ability of the channel to interact with microfilaments, resulting in an increased extent of A-type conversion.  相似文献   
42.
Riven I  Kalmanzon E  Segev L  Reuveny E 《Neuron》2003,38(2):225-235
G protein-coupled potassium channels (GIRK/Kir3.x) are key determinants that translate inhibitory chemical neurotransmission into changes in cellular excitability. To understand the mechanism of channel activation by G proteins, it is necessary to define the structural rearrangements in the channel that result from interaction with Gbetagamma subunits. In this study we used a combination of fluorescence spectroscopy and through-the-objective total internal reflection microscopy to monitor the conformational rearrangements associated with the activation of GIRK channels in single intact cells. We detect activation-induced changes in FRET consistent with a rotation and expansion of the termini along the central axis of the channel. We propose that this rotation and expansion of the termini drives the channel to open by bending and possibly rotating the second transmembrane segment.  相似文献   
43.
Ion channels lower the energetic barrier for ion passage across cell membranes and enable the generation of bioelectricity. Electrostatic interactions between permeant ions and channel pore helix dipoles have been proposed as a general mechanism for facilitating ion passage. Here, using genetic selections to probe interactions of an exemplar potassium channel blocker, barium, with the inward rectifier Kir2.1, we identify mutants bearing positively charged residues in the potassium channel signature sequence at the pore helix C terminus. We show that these channels are functional, selective, resistant to barium block, and have minimally altered conductance properties. Both the experimental data and model calculations indicate that barium resistance originates from electrostatics. We demonstrate that potassium channel function is remarkably unperturbed when positive charges occur near the permeant ions at a location that should counteract pore helix electrostatic effects. Thus, contrary to accepted models, the pore helix dipole seems to be a minor factor in potassium channel permeation.  相似文献   
44.
45.
Sadja R  Smadja K  Alagem N  Reuveny E 《Neuron》2001,29(3):669-680
G protein-coupled inwardly rectifying potassium channels, GIRK/Kir3.x, are gated by the Gbetagamma subunits of the G protein. The molecular mechanism of gating was investigated by employing a novel yeast-based random mutagenesis approach that selected for channel mutants that are active in the absence of Gbetagamma. Mutations in TM2 were found that mimicked the Gbetagamma-activated state. The activity of these channel mutants was independent of receptor stimulation and of the availability of heterologously expressed Gbetagamma subunits but depended on PtdIns(4,5)P(2). The results suggest that the TM2 region plays a key role in channel gating following Gbetagamma binding in a phospholipid-dependent manner. This mechanism of gating in inwardly rectifying K+ channels may be similar to the involvement of the homologous region in prokaryotic KcsA potassium channel and, thus, suggests evolutionary conservation of the gating structure.  相似文献   
46.
A mutation of Klebsiella aerogenes causing production of an altered PII regulatory protein which stimulates overadenylylation of glutamine synthetase and also prevents its derepression was combined with mutations abolishing the activity of adenylyltransferase. The results support the idea that PII plays a role in the regulation of the level of glutamine synthetase which is independent of its interaction with adenylyltransferase.  相似文献   
47.
In vitro generation of red blood cells (RBCs) has the potential to circumvent the shortfalls in global demand for blood for transfusion applications. The conventional approach for RBC generation has been from differentiation of hematopoietic stem cells (HSCs) derived from cord blood, adult bone marrow or peripheral blood. More recently, RBCs have been generated from human induced pluripotent stem cells (hiPSCs) as well as from immortalized adult erythroid progenitors. In this review, we highlight the recent advances to RBC generation from these different approaches and discuss the challenges and new strategies that can potentially make large-scale in vitro generation of RBCs a feasible approach.  相似文献   
48.
It has been reported earlier that the slow (C-type) inactivated conformation in Kv channels is stabilized by a multipoint hydrogen-bond network behind the selectivity filter. Furthermore, MD simulations revealed that structural water molecules are also involved in the formation of this network locking the selectivity filter in its inactive conformation. We found that the application of an extracellular, but not intracellular, solution based on heavy water (D2O) dramatically slowed entry into the slow inactivated state in Shaker-IR mutants (T449A, T449A/I470A, and T449K/I470C, displaying a wide range of inactivation kinetics), consistent with the proposed effect of the dynamics of structural water molecules on the conformational stability of the selectivity filter. Alternative hypotheses capable of explaining the observed effects of D2O were examined. Increased viscosity of the external solution mimicked by the addition of glycerol had a negligible effect on the rate of inactivation. In addition, the inactivation time constants of K+ currents in the outward and the inward directions in asymmetric solutions were not affected by a H2O/D2O exchange, negating an indirect effect of D2O on the rate of K+ rehydration. The elimination of the nonspecific effects of D2O on our macroscopic current measurements supports the hypothesis that the rate of structural water exchange at the region behind the selectivity filter determines the rate of slow inactivation, as proposed by molecular modeling.  相似文献   
49.
Palty R  Raveh A  Kaminsky I  Meller R  Reuveny E 《Cell》2012,149(2):425-438
Store operated calcium entry (SOCE) is a principal cellular process by which cells regulate basal calcium, refill intracellular Ca(2+) stores, and execute a wide range of specialized activities. STIM and Orai proteins have been identified as the essential components enabling the reconstitution of Ca(2+) release-activated Ca(2+) (CRAC) channels that mediate SOCE. Here, we report the molecular identification of SARAF as a negative regulator of SOCE. Using?heterologous expression, RNAi-mediated silencing and site directed mutagenesis combined with electrophysiological, biochemical and imaging techniques we show that SARAF is an endoplasmic reticulum membrane resident protein that associates with STIM to facilitate slow Ca(2+)-dependent inactivation of SOCE. SARAF plays a key role in shaping cytosolic Ca(2+) signals and determining the content of the major intracellular Ca(2+) stores, a role that is likely to be important in protecting cells from Ca(2+) overfilling.  相似文献   
50.
Despite intense interest in human mesenchymal stromal cells (MSCs), monitoring of the progressive occurrence of senescence has been hindered by the lack of efficient detection tools. Here, the discovery of a novel MSC senescence‐specific fluorescent probe (CyBC9) identified by a high‐throughput screen is reported. Compared with the prototypical senescence‐associated β‐galactosidase (SA‐β‐gal) staining, the CyBC9 assay is rapid (2 h) and nontoxic and can thus be applied to live cells. It is shown that CyBC9 is able to stain early and late senescent populations both in monolayer‐ and in microcarrier‐based cultures. Finally, to investigate the mechanism of CyBC9, colocalization assays are performed and it is found that CyBC9 is accumulated in the mitochondria of senescent MSCs presumably due to the loss of membrane potential. Taken together, it is expected that CyBC9 will be a useful tool to ameliorate cell therapy through rapid and early screening of senescent phenotypes in clinically relevant MSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号