首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   37篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   11篇
  2011年   11篇
  2010年   6篇
  2009年   10篇
  2008年   17篇
  2007年   8篇
  2006年   8篇
  2005年   14篇
  2004年   8篇
  2003年   11篇
  2002年   13篇
  2001年   7篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   9篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有239条查询结果,搜索用时 125 毫秒
91.
Summary Three different 3 noncoding sequences of wheat rubisco small subunit (SSU) genes (RbcS) were used as probes to identify the gene members of different RbcS subfamilies in the common wheat cultivar Chinese Spring (CS). All genes of the wheat RbcS multigene family were previously assigned to the long arm of homoeologous group 5 and to the short arm of homoeologous group 2 chromosomes of cv CS. Extracted DNA from various aneuploids of these homoeologous groups was digested with four restriction enzymes and hybridized with three different 3 noncoding sequences of wheat SSU clones. All RbcS genes located on the long arm of homoeologous group 5 chromosomes were found to comprise a single subfamily, while those located on the short arm of group 2 comprised three subfamilies. Each of the ancestral diploid genomes A, B, and D has at least one representative gene in each subfamily, suggesting that the divergence into subfamilies preceded the differentiation into species. This divergence of the RbcS genes, which is presumably accompanied by a similar divergence in the 5 region, may lead to differential expression of various subfamilies in different tissues and in different developmental stages, in response to different environmental conditions. Moreover, members of one subfamily that belong to different genomes may have diverged also in the coding sequence and, consequently, code for distinguishable SSU. It is assumed that such utilization of the RbcS multigene family increases the adaptability and phenotypic plasticity of common wheat over its diploid progenitors.  相似文献   
92.
The high molecular weight glutenin subunits are considered one of the most important components of wheat (Triticum aestivum) gluten, but their structure and interactions with other gluten proteins are still unknown. Understanding the role of these proteins in gluten formation may be aided by analyses of the conformation and interactions of individual wild-type and modified subunits expressed in heterologous systems. In the present report, the bacterium Escherichia coli was used to synthesize four naturally occurring X- and Y-type wheat high molecular weight glutenin subunits of the Glu-1D locus, as well as four bipartite chimeras of these proteins. Naturally occurring subunits synthesized in the bacteria exhibited sodium dodecyl sulfate-polyacrylamide gel electrophoresis migration properties identical to those of high molecular weight glutenin subunits extracted from wheat grains. Wild-type and chimeric subunits migrated in sodium dodecyl sulfate gels differently than expected based on their molecular weights due to conformational properties of their N- and C-terminal regions. Results from cycles of reductive cleavage and oxidative reformation were consistent with the formation of both inter- and intramolecular disulfide bonds in patterns and proportions that differed among specific high molecular weight glutenin species. Comparison of the chimeric and wild-type proteins indicated that the two C-terminal cysteines of the Y-type subunits are linked by intramolecular disulfide bonds, suggesting that the role of these cysteines in glutenin polymerization may be limited.  相似文献   
93.
Storage proteins of wheat grains (Triticum L. em Thell) are deposited in protein bodies inside vacuoles. However, the subcellular sites and mechanisms of their aggregation into protein bodies are not clear. In the present report, we provide evidence for two different types of protein bodies, low- and high-density types that accumulate concurrently and independently in developing wheat endosperm cells. Gliadins were present in both types of protein bodies, whereas the high molecular weight glutenins were localized mainly in the dense ones. Pulse-chase experiments verified that the dense protein bodies were not formed by a gradual increase in density but, presumably, by a distinct, quick process of storage protein aggregation. Subcellular fractionation and electron microscopy studies revealed that the wheat homolog of immunoglobulin heavy-chain-binding protein, an endoplasmic reticulum-resident protein, was present within the dense protein bodies, implying that these were formed by aggregation of storage proteins within the endoplasmic reticulum. The present results suggest that a large part of wheat storage proteins aggregate into protein bodies within the rough endoplasmic reticulum. Because these protein bodies are too large to enter the Golgi, they are likely to be transported directly to vacuoles. This route may operate in concert with the known Golgi-mediated transport to vacuoles in which the storage proteins apparently condense into protein bodies at a postendoplasmic reticulum location. Our results further suggest that although gliadins are transported by either one of these routes, the high molecular weight glutenins use only the Golgi bypass route.  相似文献   
94.
The aim of the present study was to determine whether activation of human T-lymphocytes affects their interaction with sheep red blood cells (SRBC). Less than 3% of the E-rosettes formed by freshly isolated peripheral blood lymphocytes (PBL) and SRBC are stable and do not disintegrate after incubation at 37 degrees C. In contrast, about 30% of PBL kept in culture for 5 days in the presence of mitomycin C-treated allogeneic lymphocytes were found to form stable E-rosettes. Whereas no rosettes were formed by freshly isolated PBL incubated with human red blood cells at 24 degrees C, 15% of the cells recovered from mixed lymphocyte reactions (MLR) formed such rosettes. When responder PBL were maintained in culture in the absence of allogeneic stimuli the proportion of cells forming stable E-rosettes depended on the serum present in the medium. Less than 5% of the responder cells kept in medium containing human serum or in serum-free medium formed stable E-rosettes, whereas 18% of the cells maintained in medium containing fetal calf serum formed stable E-rosettes. The proportion of cells forming stable E-rosettes increased before any increase in DNA synthesis was detectable in MLR. Indeed, a high proportion of cells forming stable E-rosettes appeared in MLR taking place in serum-free medium, without any accompanying increase of DNA synthesis. Depletion of cells forming EAC'-rosettes from responder PBL increased the proportion of cells forming stable E-rosettes in MLR. Exposure of the cells recovered in MLR to specific anti-T sera inhibited the formation of both stable and regular E-rosettes. Exposure of the cells recovered in MLR to anti-Ig serum had no effect on the formation of regular rosettes. Anti-Ig serum strongly inhibited the formation of stable E-rosettes by cells grown in medium containing human serum, but had no effect on the formation of stable E-rossettes by cells grown in either serum-free medium or in serum containing fetal calf serum. It is concluded that activated human T lymphocytes are characterized by their capacity to form stable E-rosettes, resistant to incubation at 37 degrees C, and by their capacity to acquire an immunoglobulin coat, possibly by binding immunoglobulin molecules present in their environment.  相似文献   
95.
Summary The effect of various chromosomes ofAegilops longissima when added to the common wheat cultivar Chinese Spring was evaluated at two levels of nitrogen fertilization for absolute and relative amount of protein in the grain. All the added chromosomes ofAe. longissima increased protein percentage: protein increase by chromosomes D, C and A averaged 3.8% while that by chromosomes F, E, G and B averaged 1.7%. Addition lines F, D and C had a significantly higher protein weight per grain. On the other hand, lines A, E and G had reduced grain protein weight per grain as compared with that of Chinese Spring. Line C carries the HMW glutenin and some of the gliadin subunits ofAe. longissima. The effect of this line, however, and obviously that of the other lines on protein content was through genes controlling the level of storage protein rather than through genes that code directly for these proteins. Nitrogen fertilization affected protein content and the relative amount of the various protein fractions in a similar manner in every addition line. When high levels of nitrogen fertilization were compared to low ones, the relative amount of the HMW glutenins remained constant while that of HMW gliadins increased and that of the LMW subunits decreased. In contrast to the nitrogen effect, increase in protein content by the addition oflongissima chromosomes did not change the relative amounts of the various protein fractions.The paper is based on a portion of a dissertation to be submitted by A.A.L. in partial fulfillment of the PhD requirements in the Feinberg Graduate School, The Weizmann Institute of Science, RehovotThe Marshall and Edith Korshak Professor of Plant Cytogenetics  相似文献   
96.
Summary Subpopulations of peripheral blood lymhocytes (PBL) from healthy individuals were separated according to their capacity to form various rosettes and tested for their cytotoxic activity on cell lines of urinary bladder and breast carcinomas. The subpopulation exerting the highest natural cytotoxic activity was characterized by the presence of cell surface Fc-receptors and by the lack of receptors for sheep red blood cells and for C'3 on their surface. Treatment with vibrio cholera neuraminidase (VCN) increased the cytotoxicity of unseparated PBL to a level twice as high as that of untreated PBL. The attachment of T-lymphocytes to tumor monolayers was increased several fold after VCN-treatment, while the attachment of other lymphocyte subpopulations was not. Evidence is presented that the augmentation of the cytotoxicity of PBL following VCN-treatment results from the interaction of VCN-treated T-lymphocytes, attached to target cells, with normal killer cells. It is suggested that augmentation of the activity of killer cells by T-lymphocytes may play a role in antitumor defense mechanisms.Abbreviations CMC Cell-mediated cytolysis - E-rosettes Rosettes formed with sheep red blood cells - EA-rosettes Rosettes formed with red blood cells coated with antibody - EAC'-rosettes Rosettes formed with red blood cells coated with antibody and complement - FCS Heat inactivated fetal calf serum - PBL Peripheral blood lymphocytes - RBC Red blood cells - RF-TAL E-rosette forming, target-attached lymphocytes - SRBC Sheep red blood cells - VCN Vibrio cholera neuraminidase  相似文献   
97.
The alpha-gal epitope (Galalpha1-3Galbeta1-(3)4GlcNAc-R) is abundantly synthesized on glycolipids and glycoproteins of non-primate mammals and New World monkeys by the glycosylation enzyme alpha1,3galactosyltransferase (alpha1,3GT). In humans, apes and Old World monkeys, this epitope is absent because the alpha1,3GT gene was inactivated in ancestral Old World primates. Instead, humans, apes and Old World monkeys produce the anti-Gal antibody, which specifically interacts with alpha-gal epitopes and which constitutes approximately 1% of circulating immunoglobulins. Anti-Gal has functioned as an immunological barrier, preventing the transplantation of pig organs into humans, because anti-Gal binds to the alpha-gal epitopes expressed on pig cells. The recent generation of alpha1,3GT knockout pigs that lack alpha-gal epitopes has resulted in the elimination of this immunological barrier. Anti-Gal can be exploited for clinical use in cancer immunotherapy by targeting autologous tumour vaccines to APC, thereby increasing their immunogenicity. Autologous intact tumour cells from haematological malignancies, or autologous tumour cell membranes from solid tumours are processed to express alpha-gal epitopes by incubation with neuraminidase, recombinant alpha1,3GT and with uridine diphosphate galactose. Subsequent immunization with such autologous tumour vaccines results in in vivo opsonization by anti-Gal IgG binding to these alpha-gal epitopes. The interaction of the Fc portion of the vaccine-bound anti-Gal with Fcgamma receptors of APC induces effective uptake of the vaccinating tumour cell membranes by the APC, followed by effective transport of the vaccinating tumour membranes to the regional lymph nodes, and processing and presentation of the tumour-associated antigen (TAA) peptides. Activation of tumour-specific T cells within the lymph nodes by autologous TAA peptides may elicit an immune response that in some patients will be potent enough to eradicate the residual tumour cells that remain after completion of standard therapy. A similar expression of alpha-gal epitopes can be achieved by transduction of tumour cells with an adenovirus vector (or other vectors) containing the alpha1,3GT gene, thus enabling anti-Gal-mediated targeting of the vaccinating transduced cells to APC. Intratumoral delivery of the alpha1,3GT gene by various vectors results in the expression of alpha-gal epitopes. Such expression of the xenograft carbohydrate phenotype is likely to induce anti-Gal-mediated destruction of the tumour lesion, similar to rejection of xenografts by this antibody. Opsonization of the destroyed tumour cell membranes by anti-Gal IgG further targets them to APC, thus converting the tumour lesion, treated by the alpha1,3GT gene, into an in situ autologous tumour vaccine.  相似文献   
98.
Monoclonal antibodies are an important tool in the study of botryllid ascidians’ immunology and developmental biology. Here we describe the development of a panel of 38 monoclonal antibodies that are specific to Botryllus schlosseri (Ascidiacea; subfamily Botryllinae) cell surface antigens. Many of these hybridomas recognize (by enzyme-linked immunosorbent assay and immunohistochemistry) epitopes of Botrylloides subpopulations (SP) II and III from the Mediterranean coast of Israel and show, on blood cell smear assays, reactions with subsets of Botryllus circulating blood cells. Fluorescence-activated cell sorting analyses using antibodies positive for botryllid tissues revealed up to 3.6% positive cells. ELISA screenings were performed with 64 new monoclonal antibodies on 5 different individual botryllid ascidian colonies (B. schlosseri, Botrylloides). The positive antibodies in this panel identified a large number of different antigenic determinants, some of which distinguish Botryllus versus Botrylloides colonies, and other, different colonies within these two species, or different cell types within tissues, embryos, and buds of individual colonies. Only 21 monoclonal antibodies tested positive with all colonies. Cross-reactivity with at least one Botrylloides colony was recorded in 49 hybridomas that identified Botryllus cells. This wide panel of monoclonal antibodies is the first such detailed set of monoclonals available for studies on botryllid ascidians.  相似文献   
99.
RNA interference (RNAi) is an ancient mechanism of gene suppression, whose machinery and biological functions are only partially understood. Intensive studies have focused on developing RNAi technologies for treating human diseases and for improving plant traits. Yet application of RNAi to improving the nutritional value of plants for human and animal nutrition, and development of the related RNAi technologies are still in their infancy. Here we discuss current knowledge of plant RNAi function, as well as concepts and strategies for the improvement of plant nutritional value through the development of plant RNAi technologies.  相似文献   
100.
G Tang  D Miron  J X Zhu-Shimoni    G Galili 《The Plant cell》1997,9(8):1305-1316
In plant and mammalian cells, excess lysine is catabolized by a pathway that is initiated by two enzymes, namely, lysine-ketoglutarate reductase and saccharopine dehydrogenase. In this study, we report the cloning of an Arabidopsis cDNA encoding a bifunctional polypeptide that contains both of these enzyme activities linked to each other. RNA gel blot analysis identified two mRNA bands-a large mRNA containing both lysine-ketoglutarate reductase and saccharopine dehydrogenase sequences and a smaller mRNA containing only the saccharopine dehydrogenase sequence. However, DNA gel blot hybridization using either the lysine-ketoglutarate reductase or the saccharopine dehydrogenase cDNA sequence as a probe suggested that the two mRNA populations apparently are encoded by the same gene. To test whether these two mRNAs are functional, protein extracts from Arabidopsis cells were fractionated by anion exchange chromatography. This fractionation revealed two separate peaks-one containing both coeluted lysine-ketoglutarate reductase and saccharopine dehydrogenase activities and the second containing only saccharopine dehydrogenase activity. RNA gel blot analysis and in situ hybridization showed that the gene encoding lysine-ketoglutarate reductase and saccharopine dehydrogenase is significantly upregulated in floral organs and in embryonic tissues of developing seeds. Our results suggest that lysine catabolism is subject to complex developmental and physiological regulation, which may operate at gene expression as well as post-translational levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号