首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   37篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   11篇
  2011年   11篇
  2010年   6篇
  2009年   10篇
  2008年   17篇
  2007年   8篇
  2006年   8篇
  2005年   14篇
  2004年   8篇
  2003年   11篇
  2002年   13篇
  2001年   7篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   9篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有239条查询结果,搜索用时 703 毫秒
151.
The 3' cleavage and polyadenylation of mRNAs has been studied in detail in animals and yeast, but not in plants. Aimed at elucidating the regulation of mRNA 3' end formation in plants, three Arabidopsis cDNAs encoding homologues of the animal proteins CstF-64, CstF-77 and CstF-50 that form the cleavage stimulating factor of the polyadenylation machinery have been cloned. It is shown experimentally that the N-terminal domain of the Arabidopsis CstF-64 homologue binds the mRNA 3' non-coding region in an analogous manner to the animal protein. It is also shown that the Arabidopsis CstF-64 and CstF-77 homologues strongly interact with each other in a similar way to their animal counterparts. These results imply that these Arabidopsis homologues belong to the polyadenylation machinery of nuclear mRNAs.  相似文献   
152.
Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) is a bifunctional enzyme catalyzing the first two steps of lysine catabolism in animals and plants. To elucidate the biochemical signification of the linkage between the two enzymes of LKR/SDH, namely lysine ketoglutarate and saccharopine dehydrogenase, we employed various truncated and mutated Arabidopsis LKR/SDH polypeptides expressed in yeast. Activity analyses of the different recombinant polypeptides under conditions of varying NaCl levels implied that LKR, but not SDH activity, is regulated by functional interaction between the LKR and SDH domains, which is mediated by the structural conformation of the linker region connecting them. Because LKR activity of plant LKR/SDH enzymes is also regulated by casein kinase 2 phosphorylation, we searched for such potential regulatory phosphorylation sites using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and site-directed mutagenesis. This analysis identified Ser-458 as a candidate for this function. We also tested a hypothesis suggesting that an EF-hand-like sequence at the C-terminal part of the LKR domain functions in a calcium-dependent assembly of LKR/SDH into a homodimer. We found that this region is essential for LKR activity but that it does not control a calcium-dependent assembly of LKR/SDH. The relevance of our results to the in vivo function of LKR/SDH in lysine catabolism in plants is discussed. In addition, because the linker region between LKR and SDH exists only in plants but not in animal LKR/SDH enzymes, our results suggest that the regulatory properties of LKR/SDH and, hence, the regulation of lysine catabolism are different between plants and animals.  相似文献   
153.
Both plants and animals catabolize lysine via saccharopine by two consecutive enzymes, lysine-ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH), which are linked on a single polypeptide. We recently demonstrated that Arabidopsis plants possess not only a bifunctional LKR/SDH but in addition a monofunctional SDH enzyme. We also speculated that these two enzymes may be controlled by a single gene (G. Tang et al. Plant Cell, 1997, 9, 1305-1316). By expressing several epitope-tagged and GUS reporter constructs, we demonstrate in the present study that the Arabidopsis monofunctional SDH is encoded by a distinct gene, which is, however, nested entirely within the coding and 3' non-coding regions of the larger bifunctional LKR/SDH gene. The entire open reading frame of the monofunctional SDH gene, as well as some components of its promoter, are also parts of the translated coding sequence of the bifunctional LKR/SDH gene. These special structural characteristics, combined with the fact that the two genes encode simultaneously two metabolically related but distinct enzymes, render the LKR/SDH locus a novel type of a composite locus. Not all plant species possess an active monofunctional SDH gene and the production of this enzyme is correlated with an increased flux of lysine catabolism. Taken together, our results suggest that the composite LKR/SDH locus serves to control an efficient, highly regulated flux of lysine catabolism  相似文献   
154.
Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern--namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H(+) symporters (SLC25A22, also known as "GC1"). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [(14)C]glutamate uniport and [(14)C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development, SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern.  相似文献   
155.
The ability of glycogen synthase kinase-3 (GSK-3) to phosphorylate insulin receptor substrate-1 (IRS-1) is a potential inhibitory mechanism for insulin resistance in type 2 diabetes. However, the serine site(s) phosphorylated by GSK-3 within IRS-1 had not been yet identified. Using an N-terminal deleted IRS-1 mutant and two IRS-1 fragments, PTB-1 1-320 and PTB-2 1-350, we localized GSK-3 phosphorylation site(s) within amino acid sequence 320-350. Mutations of serine 332 or 336, which lie in the GSK-3 consensus motif (SXXXS) within PTB-2 or IRS-1, to alanine abolished their phosphorylation by GSK-3. This suggested that Ser332 is a GSK-3 phosphorylation site and that Ser336 serves as the "priming" site typically required for GSK-3 action. Indeed, dephosphorylation of IRS-1 prevented GSK-3 phosphorylation. Furthermore, the phosphorylated peptide derived from the IRS-1 sequence was readily phosphorylated by GSK-3, in contrast to the nonphosphorylated peptide, which was not phosphorylated by the enzyme. When IRS-1 mutants S332A(IRS-1), S336A(IRS-1), or S332A/336A(IRS-1) were expressed in Chinese hamster ovary cells overexpressing insulin receptors, their insulin-induced tyrosine phosphorylation levels increased compared with that of wild-type (WT) IRS-1. This effect was stronger in the double mutant S332A/336A(IRS-1) and led to enhanced insulin-mediated activation of protein kinase B. Finally, immunoblot analysis with polyclonal antibody directed against IRS-1 phosphorylated at Ser332 confirmed IRS-1 phosphorylation in cultured cells. Moreover, treatment with the GSK-3 inhibitor lithium reduced Ser332 phosphorylation, whereas overexpression of GSK-3 enhanced this phosphorylation. In summary, our studies identify Ser332 as the GSK-3 phosphorylation target in IRS-1, indicating its physiological relevance and demonstrating its novel inhibitory role in insulin signaling.  相似文献   
156.
157.
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号