首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   51篇
  311篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   8篇
  2015年   11篇
  2014年   10篇
  2013年   12篇
  2012年   20篇
  2011年   18篇
  2010年   10篇
  2009年   12篇
  2008年   13篇
  2007年   22篇
  2006年   14篇
  2005年   13篇
  2004年   16篇
  2003年   12篇
  2002年   17篇
  2001年   12篇
  2000年   10篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1977年   6篇
  1968年   1篇
  1936年   2篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
91.
The activation of Nef-associated kinase (NAK) by Nef from human and simian immunodeficiency viruses is critical for efficient viral replication and pathogenesis. This induction occurs via the guanine nucleotide exchange factor Vav and the small GTPases Rac1 and Cdc42. In this study, we identified NAK as p21-activated kinase 1 (PAK1). PAK1 bound to Nef in vitro and in vivo. Moreover, the induction of cytoskeletal rearrangements such as the formation of trichopodia, the activation of Jun N-terminal kinase, and the increase of viral production were blocked by an inhibitory peptide that targets the kinase activity of PAK1 (PAK1 83-149). These results identify NAK as PAK1 and emphasize the central role its kinase activity plays in cytoskeletal rearrangements and cellular signaling by Nef.  相似文献   
92.
93.
94.
Maintenance of immune tolerance depends on normal tissue homeostasis   总被引:1,自引:0,他引:1  
Ags expressed at immune privileged sites and other peripheral tissues are able to induce T cell tolerance. In this study, we analyzed whether tolerance toward an intraocular tumor expressing a highly immunogenic CTL epitope is maintained, broken, or reverted into immunity in the event the anatomical integrity of the eye is lost. Inoculation of tumor cells into the anterior chamber of the eye of naive B6 mice leads to progressive intraocular tumor growth, an abortive form of CTL activation in the tumor-draining submandibular lymph node, and systemic tolerance as evidenced by the inability of these mice to reject an otherwise benign tumor cell inoculum. Loss of anatomical integrity of the eye as a consequence of phthisis resulted in loss of systemic tolerance and the emergence of effective antitumor immunity against an otherwise lethal tumor challenge. Phthisis was accompanied by dendritic cell maturation and preceded the induction of systemic tumor-specific CTL immunity. Our data show that normal tissue homeostasis and anatomical integrity is required for the maintenance of ocular tolerance and prevention of CTL-mediated immunity. These data also indicate that tissue injury in the absence of viral or microbial infection can act as a switch for the induction of CTL immunity.  相似文献   
95.
The accessory protein negative factor (Nef) from human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is required for optimal viral infectivity and the progression to acquired immunodeficiency syndrome (AIDS). Nef interacts with the endocytic machinery, resulting in the down-regulation of cluster of differentiation antigen 4 (CD4) and major histocompatibility complex class I (MHCI) molecules on the surface of infected cells. Mutations in the C-terminal flexible loop of Nef result in a lower rate of internalization by this viral protein. However, no loop-dependent binding of Nef to adaptor protein-2 (AP-2), which is the adaptor protein complex that is required for the internalization of proteins from the plasma membrane, could be demonstrated. In this study we investigated the relevance of different motifs in Nef from SIV(mac239) for its internalization, CD4 down-regulation, binding to components of the trafficking machinery, and viral infectivity. Our data suggest that the binding of Nef to the catalytic subunit H of the vacuolar membrane ATPase (V-ATPase) facilitates its internalization. This binding depends on the integrity of the whole flexible loop. Subsequent studies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity. Therefore, our data demonstrate how Nef contacts the endocytic machinery in the absence of its direct binding to AP-2 and suggest an important role for subunit H of the V-ATPase in viral infectivity.  相似文献   
96.
Increasing evidence suggests that tissue transglutaminase (tTGase; type II) is externalized from cells, where it may play a key role in cell attachment and spreading and in the stabilization of the extracellular matrix (ECM) through protein cross-linking. However, the relationship between these different functions and the enzyme's mechanism of secretion is not fully understood. We have investigated the role of tTGase in cell migration using two stably transfected fibroblast cell lines in which expression of tTGase in its active and inactive (C277S mutant) states is inducible through the tetracycline-regulated system. Cells overexpressing both forms of tTGase showed increased cell attachment and decreased cell migration on fibronectin. Both forms of the enzyme could be detected on the cell surface, but only the clone overexpressing catalytically active tTGase deposited the enzyme into the ECM and cell growth medium. Cells overexpressing the inactive form of tTGase did not deposit the enzyme into the ECM or secrete it into the cell culture medium. Similar results were obtained when cells were transfected with tTGase mutated at Tyr(274) (Y274A), the proposed site for the cis,trans peptide bond, suggesting that tTGase activity and/or its tertiary conformation dependent on this bond may be essential for its externalization mechanism. These results indicate that tTGase regulates cell motility as a novel cell-surface adhesion protein rather than as a matrix-cross-linking enzyme. They also provide further important insights into the mechanism of externalization of the enzyme into the extracellular matrix.  相似文献   
97.
98.
Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database. We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for studying the detailed function of signaling pathways of the cellular system of interest.  相似文献   
99.
Complex formation reactions of phenylboronic, phenylphosphonic, phenylarsonic and 4-aminophenyl arsonic acids with β-cyclodextrin (cycloheptaamylose, β-CD) and some simple carbohydrates (mannitol, sorbitol, glucose) have been studied using spectrophotometric, potentiometric methods and solubility measurements, supplemented with HPLC and IR analyses of the solid samples. Equilibrium constants have been determined at ionic strength of 0.2 M (NaCl) and 25 °C. β-CD forms the most stable complexes with the neutral, undissociated forms of the acids, the stability constants are as follows: phenylboronic acid: 320 ± 36, phenylphosphonic acid: 108 ± 25, phenylarsonic acid: 97 ± 4 and 4-aminophenyl arsonic acid: 107 ± 10. The stability constants for the β–CD-complexes of the ionic forms are much lower. Ternary complexes of low stability could be detected in the case of phenylphosphonic acid and sorbitol with the undissociated form and with glucose and the dianion. In more concentrated solutions phenylboronic acid forms insoluble complexes with mannitol, sorbitol and β-CD. The solid phases obtained in the ternary systems are predominantly mixtures of ester type 3:1 complexes with the carbohydrate and 1:1 inclusion complex with the β-CD. No significant interaction has been found with glucose. The phenomena can be explained by the differences in the structures of the components and by the changes in the H-bonding network of β-CD on the complex formation.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号