首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   14篇
  2011年   14篇
  2010年   7篇
  2009年   6篇
  2008年   8篇
  2007年   16篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1983年   1篇
  1982年   2篇
  1977年   6篇
  1968年   1篇
  1936年   2篇
排序方式: 共有181条查询结果,搜索用时 158 毫秒
61.
Peterlin Z  Chesler A  Firestein S 《Neuron》2007,53(5):635-638
The receptive field of the TRPA1 nociceptor is remarkably expansive when compared to other chemodetectors such as odorant receptors. The identification of a unique mechanism utilized by TRPA1 helps clarify how this protein can efficiently alert the cell to an array of reactive chemical agents, regardless of their structure.  相似文献   
62.
BACKGROUND: Alix/Bro1p family proteins have recently been identified as important components of multivesicular endosomes (MVEs) and are involved in the sorting of endocytosed integral membrane proteins, interacting with components of the ESCRT complex, the unconventional phospholipid LBPA, and other known endocytosis regulators. During infection, Alix can be co-opted by enveloped retroviruses, including HIV, providing an important function during virus budding from the plasma membrane. In addition, Alix is associated with the actin cytoskeleton and might regulate cytoskeletal dynamics. RESULTS: Here we demonstrate a novel physical interaction between the only apparent Alix/Bro1p family protein in C. elegans, ALX-1, and a key regulator of receptor recycling from endosomes to the plasma membrane, called RME-1. The analysis of alx-1 mutants indicates that ALX-1 is required for the endocytic recycling of specific basolateral cargo in the C. elegans intestine, a pathway previously defined by the analysis of rme-1 mutants. The expression of truncated human Alix in HeLa cells disrupts the recycling of major histocompatibility complex class I, a known Ehd1/RME-1-dependent transport step, suggesting the phylogenetic conservation of this function. We show that the interaction of ALX-1 with RME-1 in C. elegans, mediated by RME-1/YPSL and ALX-1/NPF motifs, is required for this recycling process. In the C. elegans intestine, ALX-1 localizes to both recycling endosomes and MVEs, but the ALX-1/RME-1 interaction appears to be dispensable for ALX-1 function in MVEs and/or late endosomes. CONCLUSIONS: This work provides the first demonstration of a requirement for an Alix/Bro1p family member in the endocytic recycling pathway in association with the recycling regulator RME-1.  相似文献   
63.
Anomeric pairs of ketopyranosyl glycosides with various substituents at C(alpha), C(beta) and C(gamma) were synthesized from the corresponding thioglycosides, and the influence of the C(alpha)-C(beta)-C(gamma)-H(gamma) torsion angle and substituent effects on the three-bond carbon-proton couplings was studied. The cis coupling constants range from 1 to 2Hz. The trans couplings are generally as small as 2.3-2.6Hz; however, for compounds bearing an unsubstituted gamma-carbon, a relatively large trans coupling was measured (4.8Hz). An S-ethyl group at the beta-position increases the cis coupling (up to 3.2Hz) compared to the corresponding O-glycosides.  相似文献   
64.
65.
Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.  相似文献   
66.

Background and Aims

Models assessing the prospects of plant species at the landscape level often focus primarily on the relationship between species dynamics and landscape structure. However, the short-term prospects of species with slow responses to landscape changes depend on the factors affecting local population dynamics. In this study it is hypothesized that large herbivores may be a major factor affecting the short-term prospects of slow-responding species in the European landscape, because large herbivores have increased in number in this region in recent decades and can strongly influence local population dynamics.

Methods

The impact of browsing by large herbivores was simulated on the landscape-level dynamics of the dry grassland perennial polycarpic herb Scorzonera hispanica. A dynamic, spatially explicit model was used that incorporated information on the location of patches suitable for S. hispanica, local population dynamics (matrices including the impact of large herbivores), initial population sizes and dispersal rate of the species. Simulations were performed relating to the prospects of S. hispanica over the next 30 years under different rates of herbivory (browsing intensity) and varying frequencies of population destruction (e.g. by human activity).

Key Results

Although a high rate of herbivory was detected in most populations of S. hispanica, current landscape-level dynamics of S. hispanica were approximately in equilibrium. A decline or increase of over 20 % in the herbivory rate promoted rapid expansion or decline of S. hispanica, respectively. This effect was much stronger in the presence of population destruction.

Conclusions

Browsing by large herbivores can have a dramatic effect on the landscape dynamics of plant species. Changes in the density of large herbivores and the probability of population destruction should be incorporated into models predicting species abundance and distribution.  相似文献   
67.
The protein-tyrosine kinase substrate annexin II is a growth regulated gene whose expression is increased in several human cancers. While the precise function of this protein is not understood, annexin II is proposed to be involved in multiple physiological activities, including DNA synthesis and cell proliferation. Targeted disruption of the annexin II gene affects calcium signaling, tyrosine phosphorylation and apoptosis, indicating the important physiological role of this protein. We used a transient co-transfection assay to regulate annexin II expression in human HeLa, 293 and 293T cells, and measured the effects of annexin II down regulation on DNA synthesis and proliferation. Transfection of cells with an antisense annexin II vector results in inhibition of cell division and proliferation, with concomitant reduction in annexin II message and protein levels. Cellular DNA synthesis is significantly reduced in antisense transfected cells. Replication extracts made from antisense transfected cells have significantly reduced efficiency to support SV40 in vitro DNA replication, while the extracts made from sense transfected cells are fully capable of replication. Our results indicate an important role of annexin II in cellular DNA synthesis and cell proliferation.  相似文献   
68.
Experimental studies of infection transmission via water from infected to healthy fish were conducted. The dark-brown bacterial colonies typical for Aeromonas salmonicida on tryptone soya agar (TSA) have been isolated and counted (from 3.0±0.6×102 to 3.5±0.5×105 c.f.u. g−1) from the internal organs of naturally infected (NI) and experimentally infected (EI) perch and sea trout. No significant differences in dark-brown bacterial counts were detected between EI perch and EI sea trout. The assessment and comparison of the alterations of the biological parameters of EI European perch and sea trout with bacterium Aeromonas salmonicida subsp. salmonicida with naturally infected perch were conducted. No mortality was recorded in groups of EI perch and sea trout. Whereas, the mortality of NI perch (collected from the main sites of outbreak of disease) was observed from the second day of the experiments. Changes in morphophysiological parameters of EI perch and sea trout were similar. Different alterations in blood cell parameters of EI fish were observed, and the most noticeable was the decrease (P≤0.01) in white blood cell count (WBC) of EI perch and sea trout. Based on these results it can be deduced that there is infection transmission of bacterium A. salmonicida from European perch via water to other fish species.  相似文献   
69.
Genetics of Yeast Glucokinase   总被引:5,自引:1,他引:4  
P. K. Maitra  Zita Lobo 《Genetics》1983,105(3):501-515
Mutants of Saccharomyces cerevisiae lacking glucokinase (EC 2.7.1.2) have no discernible phenotypic difference from the wild-type strain; in a hexokinaseless background, however, they are unable to grow on any sugar except galactose. Reversion studies with glucokinase mutants indicate that the yeast S. cerevisiae has no other enzyme for phosphorylating glucose except the two hexokinases, P1 and P2, and glucokinase. Spontaneous revertants of hxk1 hxk2 glk1 strains collected on glucose regain any one of these three enzymes. The majority of glucokinase revertants synthesize species of enzyme activity that are kinetically or otherwise indistinguishable from the wild-type enzyme. In a few cases the reverted enzyme is very perceptibly altered in properties with a Km for glucose two orders of magnitude higher than that of the enzyme from the wild-type parent. These recessive, noncomplementing mutants, thus, define a single structural gene GLK1 of glucokinase. Yeast diploids lacking all of the three enzymes for glucose phosphorylation fail to sporulate. Heterozygosity of either of the hexokinase genes HXK1 or HXK2, but not GLK1, restores sporulation. The location of GLK1 on chromosome III was indicated by loss of this chromosome when hexokinaseless diploids heterozygous for glk1 were selected for resistance to 2-deoxyglucose; the homologue of chromosome III carrying GLK1, the mating-type allele and other nutritional markers on this chromosome was lost. Meiotic mapping of glucokinase executed with heterozygosity of one of the hexokinases indicated that the gene GLK1 defining the structure of glucokinase protein is located on the left arm of chromosome III 24 cM to the left of his4 in the order: leu2--his4--glk1. --Only two of 206 independent glucokinase mutants are nonsense ochre, both of which map at one end of the gene. In hxk1 only one of 130 isolates is a nonsense mutation, whereas in hxk2 none has been found among 220 independent mutants. These results raise the possibility that the protein products of these genes have some other essential function. --An earlier mapping result for hxk2 has been corrected. The new location is on the left arm of chromosome VII, 17 cM distal to ade5 in the order: lys5--ade5--hxk2.  相似文献   
70.
Summary A glucose-negative mutant of Saccharomyces cerevisiae lacking 6-phosphogluconate dehydrogenase, the second enzyme of the pentose phosphate pathway, has been obtained by inositol starvation. Suppression of this mutant for growth on glucose takes place by the loss of glucose 6-phosphate dehydrogenase. A lesion in the latter enzyme alone leaves growth paractically unaffected. The mutations define the respective structural genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号