首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   12篇
  181篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   14篇
  2011年   14篇
  2010年   7篇
  2009年   6篇
  2008年   8篇
  2007年   16篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1983年   1篇
  1982年   2篇
  1977年   6篇
  1968年   1篇
  1936年   2篇
排序方式: 共有181条查询结果,搜索用时 21 毫秒
51.
Production of beta-lactams by the filamentous fungus Penicillium chrysogenum requires a substantial input of ATP. During glucose-limited growth, this ATP is derived from glucose dissimilation, which reduces the product yield on glucose. The present study has investigated whether penicillin G yields on glucose can be enhanced by cofeeding of an auxiliary substrate that acts as an energy source but not as a carbon substrate. As a model system, a high-producing industrial strain of P. chrysogenum was grown in chemostat cultures on mixed substrates containing different molar ratios of formate and glucose. Up to a formate-to-glucose ratio of 4.5 mol.mol(-1), an increasing rate of formate oxidation via a cytosolic NAD(+)-dependent formate dehydrogenase increasingly replaced the dissimilatory flow of glucose. This resulted in increased biomass yields on glucose. Since at these formate-to-glucose ratios the specific penicillin G production rate remained constant, the volumetric productivity increased. Metabolic modeling studies indicated that formate transport in P. chrysogenum does not require an input of free energy. At formate-to-glucose ratios above 4.5 mol.mol(-1), the residual formate concentrations in the cultures increased, probably due to kinetic constraints in the formate-oxidizing system. The accumulation of formate coincided with a loss of the coupling between formate oxidation and the production of biomass and penicillin G. These results demonstrate that, in principle, mixed-substrate feeding can be used to increase the yield on a carbon source of assimilatory products such as beta-lactams.  相似文献   
52.
Peterlin Z  Chesler A  Firestein S 《Neuron》2007,53(5):635-638
The receptive field of the TRPA1 nociceptor is remarkably expansive when compared to other chemodetectors such as odorant receptors. The identification of a unique mechanism utilized by TRPA1 helps clarify how this protein can efficiently alert the cell to an array of reactive chemical agents, regardless of their structure.  相似文献   
53.
Anomeric pairs of ketopyranosyl glycosides with various substituents at C(alpha), C(beta) and C(gamma) were synthesized from the corresponding thioglycosides, and the influence of the C(alpha)-C(beta)-C(gamma)-H(gamma) torsion angle and substituent effects on the three-bond carbon-proton couplings was studied. The cis coupling constants range from 1 to 2Hz. The trans couplings are generally as small as 2.3-2.6Hz; however, for compounds bearing an unsubstituted gamma-carbon, a relatively large trans coupling was measured (4.8Hz). An S-ethyl group at the beta-position increases the cis coupling (up to 3.2Hz) compared to the corresponding O-glycosides.  相似文献   
54.
55.
BACKGROUND: Alix/Bro1p family proteins have recently been identified as important components of multivesicular endosomes (MVEs) and are involved in the sorting of endocytosed integral membrane proteins, interacting with components of the ESCRT complex, the unconventional phospholipid LBPA, and other known endocytosis regulators. During infection, Alix can be co-opted by enveloped retroviruses, including HIV, providing an important function during virus budding from the plasma membrane. In addition, Alix is associated with the actin cytoskeleton and might regulate cytoskeletal dynamics. RESULTS: Here we demonstrate a novel physical interaction between the only apparent Alix/Bro1p family protein in C. elegans, ALX-1, and a key regulator of receptor recycling from endosomes to the plasma membrane, called RME-1. The analysis of alx-1 mutants indicates that ALX-1 is required for the endocytic recycling of specific basolateral cargo in the C. elegans intestine, a pathway previously defined by the analysis of rme-1 mutants. The expression of truncated human Alix in HeLa cells disrupts the recycling of major histocompatibility complex class I, a known Ehd1/RME-1-dependent transport step, suggesting the phylogenetic conservation of this function. We show that the interaction of ALX-1 with RME-1 in C. elegans, mediated by RME-1/YPSL and ALX-1/NPF motifs, is required for this recycling process. In the C. elegans intestine, ALX-1 localizes to both recycling endosomes and MVEs, but the ALX-1/RME-1 interaction appears to be dispensable for ALX-1 function in MVEs and/or late endosomes. CONCLUSIONS: This work provides the first demonstration of a requirement for an Alix/Bro1p family member in the endocytic recycling pathway in association with the recycling regulator RME-1.  相似文献   
56.
Summary Glucokinase from baker's yeast has been purified to homogeneity. The molecular weight of the subunit is 51,000. The native enzyme sediments with s20,w values in the range of 19 to nearly 4 S. The presence of glucose and phosphate favors the heavier species while ATP causes depolymerization. Titration experiments with the Ellman reagent support this view.The enzyme subunit has four sulfhydryl residues of which one is more reactive than the other three. However, it does not seem to be directly responsible for the catalytic activity. The amino acid composition of the enzyme is similar to those of the hexokinases P1 and P2 but for aspartic acid and histidine.  相似文献   
57.
Maintenance of immune tolerance depends on normal tissue homeostasis   总被引:1,自引:0,他引:1  
Ags expressed at immune privileged sites and other peripheral tissues are able to induce T cell tolerance. In this study, we analyzed whether tolerance toward an intraocular tumor expressing a highly immunogenic CTL epitope is maintained, broken, or reverted into immunity in the event the anatomical integrity of the eye is lost. Inoculation of tumor cells into the anterior chamber of the eye of naive B6 mice leads to progressive intraocular tumor growth, an abortive form of CTL activation in the tumor-draining submandibular lymph node, and systemic tolerance as evidenced by the inability of these mice to reject an otherwise benign tumor cell inoculum. Loss of anatomical integrity of the eye as a consequence of phthisis resulted in loss of systemic tolerance and the emergence of effective antitumor immunity against an otherwise lethal tumor challenge. Phthisis was accompanied by dendritic cell maturation and preceded the induction of systemic tumor-specific CTL immunity. Our data show that normal tissue homeostasis and anatomical integrity is required for the maintenance of ocular tolerance and prevention of CTL-mediated immunity. These data also indicate that tissue injury in the absence of viral or microbial infection can act as a switch for the induction of CTL immunity.  相似文献   
58.
59.
Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database. We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for studying the detailed function of signaling pathways of the cellular system of interest.  相似文献   
60.
Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号