首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1869篇
  免费   172篇
  2041篇
  2024年   4篇
  2023年   20篇
  2022年   41篇
  2021年   55篇
  2020年   32篇
  2019年   64篇
  2018年   68篇
  2017年   68篇
  2016年   70篇
  2015年   126篇
  2014年   114篇
  2013年   130篇
  2012年   187篇
  2011年   149篇
  2010年   104篇
  2009年   79篇
  2008年   95篇
  2007年   78篇
  2006年   75篇
  2005年   75篇
  2004年   79篇
  2003年   58篇
  2002年   68篇
  2001年   23篇
  2000年   12篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   12篇
  1992年   9篇
  1991年   8篇
  1990年   6篇
  1989年   12篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1980年   4篇
  1979年   3篇
  1977年   6篇
  1975年   5篇
  1973年   7篇
  1970年   2篇
  1969年   2篇
排序方式: 共有2041条查询结果,搜索用时 0 毫秒
141.
We utilize structurally targeted peptides to identify a "tC fusion switch" inherent to the coil domains of the neuronal t-SNARE that pairs with the cognate v-SNARE. The tC fusion switch is located in the membrane-proximal portion of the t-SNARE and controls the rate at which the helical bundle that forms the SNAREpin can zip up to drive bilayer fusion. When the fusion switch is "off" (the intrinsic state of the t-SNARE), zippering of the helices from their membrane-distal ends is impeded and fusion is slow. When the tC fusion switch is "on," fusion is much faster. The tC fusion switch can be thrown by a peptide that corresponds to the membrane-proximal half of the cognate v-SNARE, and binds reversibly to the cognate region of the t-SNARE. This structures the coil in the membrane-proximal domain of the t-SNARE and accelerates fusion, implying that the intrinsically unstable coil in that region is a natural impediment to the completion of zippering, and thus, fusion. Proteins that stabilize or destabilize one or the other state of the tC fusion switch would exert fine temporal control over the rate of fusion after SNAREs have already partly zippered up.  相似文献   
142.
In ecosystems with seasonal fluctuations in food supply many species use two strategies to store food: larder hoarding and scatter hoarding. However, because species at different geographic locations may experience distinct environmental conditions, differences in hoarding behavior may occur. Tree squirrels in the genus Tamiasciurus display variation in hoarding behavior. Whereas red (Tamiasciurus hudsonicus) and Douglas's (Tamiasciurus douglasii) squirrels in mesic coniferous forests defend territories centered around larder hoards maintaining non‐overlapping home ranges, red squirrels in deciduous forests defend small scatter‐hoarded caches of cones maintaining overlapping home ranges. As in other rodent species, variation in hoarding behavior appears to influence the spacing behavior of red and Douglas's squirrels. In contrast, Mearns's squirrels (Tamiasciurus mearnsi) in xeric coniferous forests neither rely on larder hoards nor appear to display territorial behavior. Unfortunately, little is known about the ecology of this southernmost Tamiasciurus. Using radiotelemetry, we estimated home‐range size, overlap, and maximum distance traveled from nest to examine the spacing behavior of Mearns's squirrels. Similar to scatter‐hoarding rodents, maximum distance traveled from nest was greater for males during mating season, whereas those of females were similar year round. Although no seasonal differences were detected, male home ranges were three times larger during mating season, whereas those of females were smaller and displayed a minor variation between seasons. Home ranges were overlapped year round but contrary to our expectations, overlap was greater during mating season for both sexes, with no detectable relationship between male home‐range size and the number of females overlapped during mating season. Overall, the results appear to support our hypothesis that in the absence of larder hoards, the spacing behavior of Mearns's squirrels should be different from larder‐hoarding congeners and more similar to scatter‐hoarding rodents.  相似文献   
143.
To better understand breeding conditions to promote reproduction in captive kori bustards, fundamental endocrine studies measuring fecal androgen metabolites in male and female kori bustards were conducted. Feces collected weekly from males and females were analyzed for testosterone using enzyme‐linked immunoassay. Results from adult males (n = 5), adult females (n = 10), immature males (n = 10), and immature females (n = 10) revealed seasonally elevated testosterone concentrations in fertile, but not nonfertile adult males and females (P > 0.05). Adult females that were not maintained in a breeding group, or that did not produce eggs, did not demonstrate increases in testosterone compared to egg laying counterparts. In males, but not females, seasonal testosterone increases were accompanied by weight gain. Peaks in male fecal androgen metabolites ranged from 10‐ to 22‐fold higher than nonbreeding season (181.5 ± 19.1 vs. 17.0 ± 0.94 ng/g; P < 0.05). Mean breeding season values for adult males were 83.6 ± 6.1 ng/g vs. nonbreeding season values of 12.3 ± 0.73 ng/g (P < 0.05). In females, average breeding season testosterone concentrations were approximately 4‐fold higher than nonbreeding season (55.9 ± 6.0 vs. 14.5 ± 1.8 ng/g), with peaks 10‐ to 30‐fold higher. Results show that noninvasive fecal androgen metabolite analysis can provide a means of predicting fertility potential of male and female kori bustards and might be utilized to assess effects of modifying captive environments to promote reproduction in this species. Zoo Biol. 32:54‐62, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
144.

The adoption of measures to protect the viability of threatened populations should be supported by empirical data identifying appropriate conservation units and management strategies. The global population of the majorera limpet, P. candei candei d’Orbigny, 1840, is restricted to the Macaronesian islands in the NE Atlantic, including near-to-extinct and healthy populations in Fuerteventura and Selvagens, respectively. The taxonomic position, genetic diversity and intra- and interspecific relationships of these populations are unclear, which is hindering the implementation of a recovery plan for the overexploited majorera limpet on Fuerteventura. In this study, ddRAD-based genome scanning was used to overcome the limitations of mitochondrial DNA-based analysis. As a result, P. candei candei was genetically differentiated from the closely related P. candei crenata for the first time. Moreover, genetic differentiation was detected between P. candei candei samples from Selvagens and Fuerteventura, indicating that translocations from the healthy Selvagens source population are inadvisable. In conclusion, the majorera limpet requires population-specific management focused on the preservation of exceptional genetic diversity with which to face future environmental challenges.

  相似文献   
145.

Sucrose synthases (SuSys) have been attracting great interest in recent years in industrial biocatalysis. They can be used for the cost-effective production of uridine 5′-diphosphate glucose (UDP-glucose) or its in situ recycling if coupled to glycosyltransferases on the production of glycosides in the food, pharmaceutical, nutraceutical, and cosmetic industry. In this study, the homotetrameric SuSy from Acidithiobacillus caldus (SuSyAc) was immobilized-stabilized on agarose beads activated with either (i) glyoxyl groups, (ii) cyanogen bromide groups, or (iii) heterogeneously activated with both glyoxyl and positively charged amino groups. The multipoint covalent immobilization of SuSyAc on glyoxyl agarose at pH 10.0 under optimized conditions provided a significant stabilization factor at reaction conditions (pH 5.0 and 45 °C). However, this strategy did not stabilize the enzyme quaternary structure. Thus, a post-immobilization technique using functionalized polymers, such as polyethyleneimine (PEI) and dextran-aldehyde (dexCHO), was applied to cross-link all enzyme subunits. The coating of the optimal SuSyAc immobilized glyoxyl agarose with a bilayer of 25 kDa PEI and 25 kDa dexCHO completely stabilized the quaternary structure of the enzyme. Accordingly, the combination of immobilization and post-immobilization techniques led to a biocatalyst 340-fold more stable than the non-cross-linked biocatalyst, preserving 60% of its initial activity. This biocatalyst produced 256 mM of UDP-glucose in a single batch, accumulating 1 M after five reaction cycles. Therefore, this immobilized enzyme can be of great interest as a biocatalyst to synthesize UDP-glucose.

  相似文献   
146.
Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a distinct telomeric chromatin environment is a major requirement for the folding of yeast telomeres. We demonstrate that telomeres are not folded when cells enter replicative senescence, which occurs independently of short telomere length. Indeed, Sir2, Sin3 and Set2 protein levels are decreased during senescence and their absence may thereby prevent telomere folding. Additionally, we show that the homologous recombination machinery, including the Rad51 and Rad52 proteins, as well as the checkpoint component Rad53 are essential for establishing the telomere fold-back structure. This study outlines a method to interrogate telomere-subtelomere interactions at a single unmodified yeast telomere. Using this method, we provide insights into how the spatial arrangement of the chromosome end structure is established and demonstrate that telomere folding is compromised throughout replicative senescence.  相似文献   
147.
148.
Collagen Q (ColQ) is a key multidomain functional protein of the neuromuscular junction (NMJ), crucial for anchoring acetylcholinesterase (AChE) to the basal lamina (BL) and accumulating AChE at the NMJ. The attachment of AChE to the BL is primarily accomplished by the binding of the ColQ collagen domain to the heparan sulfate proteoglycan perlecan and the COOH-terminus to the muscle-specific receptor tyrosine kinase (MuSK), which in turn plays a fundamental role in the development and maintenance of the NMJ. Yet, the precise mechanism by which ColQ anchors AChE at the NMJ remains unknown. We identified five novel mutations at the COOH-terminus of ColQ in seven patients from five families affected with endplate (EP) AChE deficiency. We found that the mutations do not affect the assembly of ColQ with AChE to form asymmetric forms of AChE or impair the interaction of ColQ with perlecan. By contrast, all mutations impair in varied degree the interaction of ColQ with MuSK as well as basement membrane extract (BME) that have no detectable MuSK. Our data confirm that the interaction of ColQ to perlecan and MuSK is crucial for anchoring AChE to the NMJ. In addition, the identified COOH-terminal mutants not only reduce the interaction of ColQ with MuSK, but also diminish the interaction of ColQ with BME. These findings suggest that the impaired attachment of COOH-terminal mutants causing EP AChE deficiency is in part independent of MuSK, and that the COOH-terminus of ColQ may interact with other proteins at the BL.  相似文献   
149.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   
150.

Background

The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well.

Objective

In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content.

Methods

Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden.

Results

No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring.

Conclusions

In this animal model, modulation of paternal B vitamin intake prior to mating alters offspring weight gain, lipid metabolism and tumor growth in a sex-specific fashion. These results highlight the need to better define how paternal nutrition affects the health of offspring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号