首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2179篇
  免费   177篇
  国内免费   216篇
  2024年   2篇
  2023年   28篇
  2022年   66篇
  2021年   111篇
  2020年   72篇
  2019年   117篇
  2018年   106篇
  2017年   74篇
  2016年   93篇
  2015年   142篇
  2014年   154篇
  2013年   143篇
  2012年   206篇
  2011年   167篇
  2010年   99篇
  2009年   84篇
  2008年   112篇
  2007年   90篇
  2006年   75篇
  2005年   72篇
  2004年   39篇
  2003年   49篇
  2002年   56篇
  2001年   37篇
  2000年   33篇
  1999年   49篇
  1998年   23篇
  1997年   31篇
  1996年   21篇
  1995年   36篇
  1994年   32篇
  1993年   16篇
  1992年   35篇
  1991年   22篇
  1990年   20篇
  1989年   14篇
  1988年   11篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   11篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
排序方式: 共有2572条查询结果,搜索用时 15 毫秒
91.
This article raises the complex issue of improving plant nutritional value through metabolic engineering and the potential of using RNAi and micro RNA technologies to overcome this complexity, focusing on a few key examples. It also highlights current knowledge of RNAi and microRNA functions and discusses recent progress in the development of new RNAi vectors and their applications. RNA interference (RNAi) and microRNA (miRNA) are recent breakthrough discoveries in the life sciences recognized by the 2006 Nobel Prize in Physiology or Medicine. The importance of these discoveries relates not only to elucidating the fundamental regulatory aspects of gene expression, but also to the tremendous potential of their applications in plants and animals. Here, we review recent applications of RNAi and microRNA for improving the nutritional value of plants, discuss applications of metabolomics technologies in genetic engineering, and provide an update on the related RNAi and microRNA technologies.  相似文献   
92.
Polar auxin transport (PAT), which is controlled precisely by both auxin efflux and influx facilitators and mediated by the cell trafficking system, modulates organogenesis, development and root gravitropism. ADP-ribosylation factor (ARF)-GTPase protein is catalyzed to switch to the GTP-bound type by a guanine nucleotide exchange factor (GEF) and promoted for hybridization to the GDP-bound type by a GTPase-activating protein (GAP). Previous studies showed that auxin efflux facilitators such as PIN1 are regulated by GNOM, an ARF-GEF, in Arabidopsis. In the November issue of The Plant Journal, we reported that the auxin influx facilitator AUX1 was regulated by ARF-GAP via the vesicle trafficking system.1 In this addendum, we report that overexpression of OsAGAP leads to enhanced root gravitropism and propose a new model of PAT regulation: a loop mechanism between ARF-GAP and GEF mediated by vesicle trafficking to regulate PAT at influx and efflux facilitators, thus controlling root development in plants.Key Words: ADP-ribosylation factor (ARF), ARF-GAP, ARF-GEF, auxin, GNOM, polar transport of auxinPolar auxin transport (PAT) is a unique process in plants. It results in alteration of auxin level, which controls organogenesis and development and a series of physiological processes, such as vascular differentiation, apical dominance, and tropic growth.2 Genetic and physiological studies identified that PAT depends on efflux facilitators such as PIN family proteins and influx facilitators such as AUX1 in Arabidopsis.Eight PIN family proteins, AtPIN1 to AtPIN8, exist in Arabidopsis. AtPIN1 is located at the basal side of the plasma membrane in vascular tissues but is weak in cortical tissues, which supports the hypothesis of chemical pervasion.3 AtPIN2 is localized at the apical side of epidermal cells and basally in cortical cells.1,4 GNOM, an ARF GEF, modulates the localization of PIN1 and vesicle trafficking and affects root development.5,6 The PIN auxin-efflux facilitator network controls root growth and patterning in Arabidopsis.4 As well, asymmetric localization of AUX1 occurs in the root cells of Arabidopsis plants,7 and overexpression of OsAGAP interferes with localization of AUX1.1 Our data support that ARF-GAP mediates auxin influx and auxin-dependent root growth and patterning, which involves vesicle trafficking.1 Here we show that OsAGAP overexpression leads to enhanced gravitropic response in transgenic rice plants. We propose a model whereby ARF GTPase is a molecular switch to control PAT and root growth and development.Overexpression of OsAGAP led to reduced growth in primary or adventitious roots of rice as compared with wild-type rice.1 Gravitropism assay revealed transgenic rice overxpressing OsAGAP with a faster response to gravity than the wild type during 24-h treatment. However, 1-naphthyl acetic acid (NAA) treatment promoted the gravitropic response of the wild type, with no difference in response between the OsAGAP transgenic plants and the wild type plants (Fig. 1). The phenotype of enhanced gravitropic response in the transgenic plants was similar to that in the mutants atmdr1-100 and atmdr1-100/atpgp1-100 related to Arabidopsis ABC (ATP-binding cassette) transporter and defective in PAT.8 The physiological data, as well as data on localization of auxin transport facilitators, support ARF-GAP modulating PAT via regulating the location of the auxin influx facilitator AUX1.1 So the alteration in gravitropic response in the OsAGAP transgenic plants was explained by a defect in PAT.Open in a separate windowFigure 1Gravitropism of OsAGAP overexpressing transgenic rice roots and response to 1-naphthyl acetic acid (NAA). (A) Gravitropism phenotype of wild type (WT) and OsAGAP overexpressing roots at 6 hr gravi-stimulation (top panel) and 0 hr as a treatment control (bottom panel). (B) Time course of gravitropic response in transgenic roots. (C and D) results correspond to those in (A and B), except for treatment with NAA (5 × 10−7 M).The polarity of auxin transport is controlled by the asymmetric distribution of auxin transport proteins, efflux facilitators and influx carriers. ARF GTPase is a key member in vesicle trafficking system and modulates cell polarity and PAT in plants. Thus, ARF-GDP or GTP bound with GEF or GAP determines the ARF function on auxin efflux facilitators (such as PIN1) or influx ones (such as AUX1).ARF1, targeting ROP2 and PIN2, affects epidermal cell polarity.9 GNOM is involved in the regulation of PIN1 asymmetric localization in cells and its related function in organogenesis and development.6 Although VAN3, an ARF-GAP in Arabidopsis, is located in a subpopulation of the trans-Golgi transport network (TGN), which is involved in leaf vascular network formation, it does not affect PAT.10 OsAGAP possesses an ARF GTPase-activating function in rice.11 Specifically, our evidence supports that ARF-GAP bound with ARF-GTP modulates PAT and gravitropism via AUX1, mediated by vesicle trafficking, including the Golgi stack.1Therefore, we propose a loop mechanism between ARF-GAP and GEF mediated by the vascular trafficking system in regulating PAT at influx and efflux facilitators, which controls root development and gravitropism in plants (Fig. 2). Here we emphasize that ARF-GEF catalyzes a conversion of ARF-bound GDP to GTP, which is necessary for the efficient delivery of the vesicle to the target membrane.12 An opposite process of ARF-bound GDP to GTP is promoted by ARF-GTPase-activating protein via binding. A loop status of ARF-GTP and ARF-GDP bound with their appurtenances controls different auxin facilitators and regulates root development and gravitropism.Open in a separate windowFigure 2Model for ARF GTPase as a molecular switch for the polar auxin transport mediated by the vesicle traffic system.  相似文献   
93.
Elevated creatine kinase (CK) in the circulation was generally regarded to be a passive release from muscle damage. We utilized proteomic methodologies to characterize amphioxus humoral fluid APPs in response to caudal trauma, and found several spots of CK alterations with up-regulation and pI shift. Its amount and enzyme activity showed a dynamic pattern of APP in humoral fluid accompanied with a reduction in enzyme activity of muscle, whereas there was no significant difference in CK amount of muscle and the other tissues and in CK enzyme activity of the other tissues between different time points of sample collection following caudal trauma. In addition, CK phosphorylation regulation during injury was not achieved by monoclonal antibodies separately against phosphothreonine, phosphotyrosine, and phosphoserine. These results suggested that the CK elevation of humoral fluid might be from muscle, being an active response to caudal trauma rather than a passive release from muscle damage. Therefore, CK ability in response to caudal trauma should be highly concerned.  相似文献   
94.
Molecular dynamics simulations were performed to elucidate the interactions of CDK2 and CDK5 complexes with three inhibitors: R-roscovitine, S-roscovitine, and indirubin-3′-oxime. The preference of the two complexes for R-roscovitine over the S enantiomer, as reported by the experiment, was also found by the simulations. More importantly, the simulations showed that the cause of the stronger affinity for the R enantiomer is the presence of an important hydrogen bond between R-roscovitine and the kinases not found with S-roscovitine. The simulations also showed two amino acid mutations in the active site of CDK5/R-roscovitine that favor binding-enhanced electrostatic contributions, making the inhibitor more effective for CDK5 than for CDK2. This suggests that the effectiveness of roscovitine-like inhibitors can be improved by enhancing their electrostatic interaction with the kinases. Finally, molecular mechanics–Possion–Boltzmann/surface area calculations of the CDK5/indirubin-3′-oxime system in both water-excluded and water-included environments gave significantly different electrostatic contributions to the binding. The simulations detected the displacement of a water molecule in the active site of the water-included CDK/indirubin-3′-oxime system. This resulted in a more conserved binding pattern than the water-excluded structure. Hence, in the design of new indirubin-like inhibitors, it is important to include the water molecule in the analysis. Figure Hydrogen bonding networks at the active sites of both CDK5/R-roscotivine (light grey) and CDK2/R-roscovitine (black).  相似文献   
95.
Li  Yuanbin  Liu  Haifen  Zeng  Zhaohui  Lin  Hui  Chen  Xin  Yuan  Xianglian  Qiu  Jizhe  Fu  Fengchun  Chen  Zhuang  Kuang  Jianjun 《Journal of molecular histology》2022,53(4):763-772
Journal of Molecular Histology - We investigate the protective effect of ginsenoside Rb3 on skin flap microvasculature following ischemia-reperfusion (I/R) injury and its regulatory mechanism. We...  相似文献   
96.
97.
王明明  庄伟伟 《植物研究》2022,42(1):138-150
深入了解荒漠短命植物的化学计量特征,有助于更好地理解生境土壤因子与植物生存策略的关系。以古尔班通古特沙漠广泛分布的尖喙牻牛儿苗(Erodium oxyrrhynchum)、假狼紫草(Nonea caspica)、琉苞菊(Hyalea pulchella)、飘带果(Lactuca undulata)为植物材料,测定不同深度(0~5、5~10、10~15 cm)的土壤理化性质,野外原位多时段采样比较分析4种植物化学计量特征与土壤因子的动态变化及其耦合关系。结果表明:①4种短命植物碳(C)、氮(N)、磷(P)含量普遍较低,化学计量特征存在物种间差异,但在不同生长期内变化规律大致相似。N、P含量从幼苗期到结实期逐渐减少,而C含量则长期趋于稳定。整个生长期内,P、C∶P的变异幅度较大,相反,C、N∶P的变异幅度较小。4种植物在不同生长期的化学计量特征差异与生长期、植物种类存在显著相关性。②0~5 cm土层有机碳(SOC)、总氮(TN)、总磷(TP)含量最高,且随土层的加深逐渐减少。随着植物的生长,0~5 cm土层中SOC和TN含量呈明显增加的趋势,而TP含量却呈现抛物线状变化趋势。在植物不同生长期内,土壤TP含量稳定性最强,SOC、TN的变异性较强,较低的N含量及TN∶TP比显示出该区域土壤属于N素缺乏类型。3个土层土壤在不同生长期的化学计量特征差异受土层、生长期的影响显著。③4种植物与各层次土壤化学计量特征的相关性无一致规律。植物化学计量指标仅与0~10 cm土层SOC、SOC∶TP相关性较强,而大部分化学计量特征间未显示出相关性。上述结果说明植物化学计量特征并非全部由土壤养分特征直接决定,其明显的种间差异显示了植物自身遗传特性在土壤—植物计量特征耦合关系的重要性。  相似文献   
98.
邱金水  王亚楠  庄会富 《生物多样性》2022,30(11):22356-182
高质量的生物多样性数据能够为生物多样性的研究与保护提供数据支撑。目前研究人员开发了大量的生物多样性数据处理软件或工具, 包括工作流系统、R语言包、Python语言包和Excel工具等, 但是使用这些软件或工具需要用户安装相应的软件客户端, 并掌握一定的编程语言、软件开发和复杂的Excel公式等知识和技能。为降低用户的学习成本和使用门槛, 本文采用了Browser/Server模式设计技术、Web技术、可视化技术、响应式开发技术、网络爬虫技术、数据处理技术和Solr智能检索技术等, 针对不同维度的生物多样性数据设计和开发了相应的数据处理模块, 构建了中国生物多样性在线数据处理平台(http://dp.iflora.cn/)。该平台能够有效地帮助科研人员对物种名称、地理位置、时间日期和经纬度等数据进行处理, 并提供数据格式转换、数据质量评测和资源统计分析等辅助功能, 帮助科研人员实现零代码和低门槛地处理生物多样性数据, 提供便捷、高效和简单的数据清洗、校正、转换和整合等数据处理渠道, 为生物多样性研究和保护提供信息化技术支持与服务。  相似文献   
99.
国土空间规划背景下, 生态保护红线是在生态空间的现有基础上提出管控要求, 但其与各类生态空间的管控要求之间是否兼容以及如何协调, 仍需要梳理。本研究首先将生态空间划分为自然和管理两大属性和宏观、中观和微观三个层次进行类型体系梳理; 然后, 基于管控视角, 从管理目标、管控内容与管控强度三方面着重探讨13类生态空间与生态保护红线的差异。在管控目标方面, 两者的支持与调节目标兼容度较高, 供给与文化目标定位差异较大; 在管控内容方面, 差异主要表现在培育修复类和人工利用类; 在管控强度方面, 生态保护红线两级管控强度和生态空间三级管控强度不完全匹配。建议以“两大属性三个层次”系统完善生态空间类型体系, 从管理目标、管控内容与管控强度三方面进行生态空间管控要求体系化构建; 进一步完善生态保护红线管控内容和管控强度, 使其与对应的各类生态空间管控要求更好地协调。  相似文献   
100.
In our previous studies, programmed cell death (PCD) was induced in human periodontal ligament (PDL) cells, through activation of caspase-3 and upregulation of CASP5 gene (encoding caspase-5 protein), in response to mechanical stretch loading. The aim of this study is to explore the relationship between the inflammatory caspase, caspase-5, and the apoptotic executioner protein, caspase-3, in human PDL cells. Here, we found that cyclic stretching upregulated the activity and the protein expression level of caspase-3 and -5 and the addition of the caspase-3 inhibitor or caspase-5 inhibitor significantly inhibited the stretch-induced PCD. Meanwhile, the inhibition of caspase-5 inhibited the activation of caspase-3 and vice versa. The result of coimmunoprecipitation also demonstrated that the expression of caspase-3 was immunoprecipitated with caspase-5. Thus, our study revealed that the in vitro application of cyclic stretching induced PCD by activation of caspase-3 and -5 in human PDL cells, and these two caspases could interact with each other after mechanical stretch loading. The study may facilitate further studies on the mechanism of stretch-induced PCD and help us understand the force-related periodontal homeostasis and remodeling better.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号