首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
  2018年   1篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1965年   2篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
31.
The very low level of postillumination ATP synthesis in chromatophores was markedly stimulated when permeant anions (thiocyanate or perchlorate) or permeant cations (potassium in the presence of valinomycin) were added to the light stage. Although these compounds stimulated also light-induced proton uptake in chromatophores the pH dependence of both photoreactions was different. Proton uptake peaked at pH 6.5 while the amount of postillumination ATP was maximal when the light stage was carried out around pH 7.7. The increased yield of ATP at the more alkaline pH could not be explained by a slower decay of the high energy state at this pH, since the decay rate was faster at pH 7.7 than at pH 6.5. The proton concentration gradient which is maintained across the chromatophore membrane in the light was also found to increase when the external pH was raised from 6.0 to 8.0. Only a minimal amount of postillumination ATP was formed when this gradient was below 2.1 pH units, but above this value the ATP yield rose steeply as a function of the increasing pH gradient. In light of these results it is suggested that in order to obtain a high yield of postillumination ATP synthesis in chromatophores two conditions are required: the particles have to be loaded with a sufficient number of protons and a light-induced pH gradient above a certain threshold value has to be maintained across their membrane. The low yield of postillumination ATP in chromatophores and the increase obtained by adding permeating ions, is thus explained by similar variations in the extent of the pH gradient, which exceeded the threshold value only in the presence of the permeating ions.  相似文献   
32.
33.
34.
35.
36.
37.
38.
Two highly conserved amino acid residues near the C-terminus within the gamma subunit of the mitochondrial ATP synthase form a "catch" with an anionic loop on one of the three beta subunits within the catalytic alphabeta hexamer of the F1 segment [Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. Forming the catch is considered to be an essential step in cooperative nucleotide binding leading to gamma subunit rotation. The analogous residues, Arg304 and Gln305, in the chloroplast F1 gamma subunit were changed to leucine and alanine, respectively. Each mutant gamma was assembled together with alpha and beta subunits from Rhodospirillum rubrum F1 into a hybrid photosynthetic F1 that carries out both MgATPase and CaATPase activities and ATP-dependent gamma rotation [Tucker, W. C., Schwarcz, A., Levine, T., Du, Z., Gromet-Elhanan, Z., Richter, M. L. and Haran, G. (2004) J. Biol. Chem. 279, 47415-47418]. Surprisingly, changing Arg304 to leucine resulted in a more than 2-fold increase in the kcat for MgATP hydrolysis. In contrast, changing Gln305 to alanine had little effect on the kcat but completely abolished the well-known stimulatory effect of the oxyanion sulfite on MgATP hydrolysis. The MgATPase activities of combined mutants with both residues substituted were strongly inhibited, whereas the CaATPase activities were inhibited, but to a lesser extent. The results indicate that the C-terminus of the photosynthetic F1 gamma subunit, like its mitochondrial counterpart, forms a catch with the alpha and beta subunits that modulates the nucleotide binding properties of the catalytic site(s). The catch is likely to be part of an activation mechanism, overcoming inhibition by free mg2+ ions, but is not essential for cooperative nucleotide exchange.  相似文献   
39.
The oligomycin- and N,N'-dicyclohexylcarbodiimide-sensitive adenosine triphosphatase complex extracted with Triton X-100 from the chromatophores of Rhodospirillum rubrum was extensively purified. The purification procedure included (diethylamino)ethylcellulose chromatography and glycerol gradient centrifugation. The specific activity of Mg2+-dependent ATP hydrolysis in the purified preparation increased about 11-fold, while that of Ca2+-dependent ATP hydrolysis increased 50-fold as compared with chromatophores. The purified adenosine triphosphatase complex dissociated into a maximum of eight different polypeptides upon electrophoresis in the presence of sodium dodecyl sulfate. The estimated subunit molecular weights were as follows: 56 000 (alpha), 50 000 (beta), 33 000 (gamma), and those ranging from 17 000 to 9400 for the remaining smaller subunits. The purified preparation was incorporated into phospholipid vesicles by using the freeze--thaw technique. The reconstituted vesicles catalyzed [32P]ATP exchange, which was almost completely inhibited by both oligomycin and N,N'-dicyclohexylcarbodiimide as well as by a protonophorous uncoupler, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone.  相似文献   
40.
The β and γ subunits of the Fo·Fl-ATP synthase complex of Rhodospirillum, rubrum chromatophores were removed in two consecutive steps. The resulting depleted chromatophores lost all their ATP synthesizing activity but retained 70% of the light-induced proton uptake. ATP synthesis could be restored by reattachment of the isolated β and γ subunits together, but not of either one of them separately. These data suggest that the γ and β subunits are required for the operation of the chromatophore ATP synthase, but do not seem to participate in the light-induced proton uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号