排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
There is a strong interest in knowing how various microbial systems respond to the presence of uranium (U), largely in the context of bioremediation. There is no known biological role for uranium so far. Uranium is naturally present in rocks and minerals. The insoluble nature of the U(IV) minerals keeps uranium firmly bound in the earth’s crust minimizing its bioavailability. However, anthropogenic nuclear reaction processes over the last few decades have resulted in introduction of uranium into the environment in soluble and toxic forms. Microbes adsorb, accumulate, reduce, oxidize, possibly respire, mineralize and precipitate uranium. This review focuses on the microbial responses to uranium exposure which allows the alteration of the forms and concentrations of uranium within the cell and in the local environment. Detailed information on the three major bioprocesses namely, biosorption, bioprecipitation and bioreduction exhibited by the microbes belonging to various groups and subgroups of bacteria, fungi and algae is provided in this review elucidating their intrinsic and engineered abilities for uranium removal. The survey also highlights the instances of the field trials undertaken for in situ uranium bioremediation. Advances in genomics and proteomics approaches providing the information on the regulatory and physiologically important determinants in the microbes in response to uranium challenge have been catalogued here. Recent developments in metagenomics and metaproteomics indicating the ecologically relevant traits required for the adaptation and survival of environmental microbes residing in uranium contaminated sites are also included. A comprehensive understanding of the microbial responses to uranium can facilitate the development of in situ U bioremediation strategies. 相似文献
22.
Sudha Ponnusamy Saikat Haldar Fayaj Mulani Smita Zinjarde Hirekodathakallu Thulasiram Ameeta RaviKumar 《PloS one》2015,10(10)
Human pancreatic α-amylase (HPA) inhibitors offer an effective strategy to lower postprandial hyperglycemia via control of starch breakdown. Limonoids from Azadirachta indica known for their therapeutic potential were screened for pancreatic α-amylase inhibition, a known anti-diabetic target. Studies were carried out to reveal their mode of action so as to justify their hypoglycemic potential. Of the nine limonoids isolated/semi-synthesized from A.indica and screened for α-amylase inhibition, azadiradione and exhibited potential inhibition with an IC50 value of 74.17 and 68.38 μM, respectively against HPA under in vitro conditions. Further screening on AR42J α-amylase secretory cell line for cytotoxicity and bioactivity revealed that azadiradione and gedunin exhibited cytotoxicity with IC50 of 11.1 and 13.4μM. Maximal secreted α-amylase inhibition of 41.8% and 53.4% was seen at 3.5 and 3.3μM, respectively. Michaelis-Menten kinetics suggested a mixed mode of inhibition with maltopentaose (K
i 42.2, 18.6 μM) and starch (K
i
′ 75.8, 37.4 μM) as substrate with a stiochiometry of 1:1 for both azadiradione and gedunin, respectively. The molecular docking simulation indicated plausible π-alkyl and alkyl-alkyl interactions between the aromatic amino acids and inhibitors. Fluorescence and CD confirmed the involvement of tryptophan and tyrosine in ligand binding to HPA. Thermodynamic parameters suggested that binding is enthalpically and entropically driven with ΔG° of -21.25 kJ mol-1 and -21.16 kJ mol-1 for azadiradione and gedunin, respectively. Thus, the limonoids azadiradione and gedunin could bind and inactivate HPA (anti-diabetic target) and may prove to be lead drug candidates to reduce/control post-prandial hyperglycemia. 相似文献
23.
Rokhbakhsh-Zamin F Sachdev D Kazemi-Pour N Engineer A Pardesi KR Zinjarde S Dhakephalkar PK Chopade BA 《Journal of microbiology and biotechnology》2011,21(6):556-566
A total of 31 Acinetobacter isolates were obtained from the rhizosphere of Pennisetum glaucum and evaluated for their plant-growth-promoting traits. Two isolates, namely Acinetobacter sp. PUCM1007 and A. baumannii PUCM1029, produced indole acetic acid (10-13 microgram/ml). A total of 26 and 27 isolates solubilized phosphates and zinc oxide, respectively. Among the mineral-solubilizing strains, A. calcoaceticus PUCM1006 solubilized phosphate most efficiently (84 mg/ml), whereas zinc oxide was solubilized by A. calcoaceticus PUCM1025 at the highest solubilization efficiency of 918%. All the Acinetobacter isolates, except PUCM1010, produced siderophores. The highest siderophore production (85.0 siderophore units) was exhibited by A. calcoaceticus PUCM1016. Strains PUCM1001 and PUCM1019 (both A. calcoaceticus) and PUCM1022 (Acinetobacter sp.) produced both hydroxamate- and catechol-type siderophores, whereas all the other strains only produced catechol-type siderophores. In vitro inhibition of Fusarium oxysporum under iron-limited conditions was demonstrated by the siderophore-producing Acinetobacter strains, where PUCM1018 was the most potent inhibitor of the fungal phytopathogen. Acinetobacter sp. PUCM1022 significantly enhanced the shoot height, root length, and root dry weights of pearl millet seedlings in pot experiments when compared with controls, underscoring the plant-growth-promoting potential of these isolates. 相似文献
24.
Enzymatically synthesized lauroyl glucose emulsified different hydrophobic substrates when assayed spectrophotometrically. Stable emulsions were formed with triglycerides as well as with hydrocarbons. There was a linear relation between the concentration of lauroyl glucose (50-450 microg) and emulsification activity under the assay conditions when tested with aromatic and aliphatic hydrocarbons. This sugar ester was able to emulsify the aromatic hydrocarbons benzene, toluene and xylene. Long chain alkanes (n-decane and n-hexadecane) as well as brominated long chain alkanes (1-bromodecane and 1-bromohexadecane) were efficiently emulsified. The effect of lauroyl glucose ester on degradation of crude oil by a known oil-degrading Rhodococcus species was also investigated. The culture showed enhanced degradation of crude oil when lauroyl glucose ester was used as an emulsifier. It degraded 70% of the aliphatic fraction of Bombay High crude oil in the presence of the sugar ester at a concentration of 200mg l(-1) as compared to 50% without the emulsifier. 相似文献
25.
S. Zinjarde S. Chinnathambi A. H. Lachke & A. Pant 《Letters in applied microbiology》1997,24(2):117-121
A Yarrowia lipolytica strain (NCIM 3589) isolated in our laboratory produced an emulsifier during the stationary phase when grown in a defined artificial sea water medium containing 1% (v/v) n -hexadecane, as the sole carbon source. The emulsifier was isolated by ultrafiltration, Sepharose 4B followed by isoelectric focusing (IEF) in a miniscale unit in the pH range of 3·0–10 and 3·5–5·0. The pI of the emulsifier was 4·0. The emulsifier is a glycolipid consisting of 5% protein, 20% carbohydrate and 75% lipid. The fatty acid, sugar and amino acid composition of the isolated emulsifier are described along with temperature stability, pH stability and stability in sodium chloride. This paper is a first report on rapid and simple isolation by IEF of a microbial emulsifier. 相似文献