首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5038篇
  免费   438篇
  国内免费   2篇
  5478篇
  2023年   23篇
  2022年   47篇
  2021年   77篇
  2020年   44篇
  2019年   55篇
  2018年   74篇
  2017年   62篇
  2016年   126篇
  2015年   220篇
  2014年   243篇
  2013年   296篇
  2012年   386篇
  2011年   380篇
  2010年   230篇
  2009年   207篇
  2008年   268篇
  2007年   317篇
  2006年   327篇
  2005年   299篇
  2004年   264篇
  2003年   274篇
  2002年   257篇
  2001年   79篇
  2000年   66篇
  1999年   74篇
  1998年   86篇
  1997年   53篇
  1996年   38篇
  1995年   45篇
  1994年   35篇
  1993年   37篇
  1992年   41篇
  1991年   40篇
  1990年   44篇
  1989年   31篇
  1988年   32篇
  1987年   31篇
  1986年   23篇
  1985年   17篇
  1984年   26篇
  1983年   18篇
  1982年   20篇
  1981年   21篇
  1979年   24篇
  1977年   9篇
  1976年   11篇
  1974年   12篇
  1972年   8篇
  1970年   7篇
  1968年   8篇
排序方式: 共有5478条查询结果,搜索用时 15 毫秒
51.
52.
Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-xL and oxygen tension on dopaminergic differentiation and survival of a human ventral mesencephalic stem cell line (hVM1). hVM1 cells and a Bcl-xL over-expressing subline (hVMbcl-xL) were differentiated by sequential treatment with fibroblast growth factor-8, forskolin, sonic hedgehog, and glial cell line-derived neurotrophic factor. After 10 days at 20% oxygen, hVMbcl-xL cultures contained proportionally more tyrosine hydroxylase(TH)-positive cells than hVM1 control cultures. This difference was significantly potentiated from 11 ± 0.8% to 17.2 ± 0.2% of total cells when the oxygen tension was lowered to 3%. Immunocytochemistry and Q-PCR-analysis revealed expression of several dopaminergic markers besides of TH just as dopamine was detected in the culture medium by HPLC analysis. Although Bcl-xL-over-expression reduced cell death in the cultures, it did not alter the relative content of GABAergic, neurons, while the content of astroglial cells was reduced in hVMbcl-xL cell cultures compared with control. We conclude that Bcl-xL and lowered oxygen tension act in concert to enhance dopaminergic differentiation and survival of human neural stem cells.  相似文献   
53.
The transporter associated with antigen processing (TAP) is essential for the delivery of antigenic peptides from the cytosol into the endoplasmic reticulum (ER), where they are loaded onto major histocompatibility complex class I molecules. TAP is a heterodimeric transmembrane protein that comprises the homologous subunits TAP1 and TAP2. As for many other oligomeric protein complexes, which are synthesized in the ER, the process of subunit assembly is essential for TAP to attain a native functional state. Here, we have analyzed the individual requirements of TAP1 and TAP2 for the formation of a functional TAP complex. Unlike TAP1, TAP2 is very unstable when expressed in isolation. We show that heterodimerization of TAP subunits is required for maintaining a stable level of TAP2. By using an in vitro expression system we demonstrate that the biogenesis of functional TAP depends on the assembly of preexisting TAP1 with newly synthesized TAP2, but not vice versa. The pore forming core transmembrane domain (core TMD) of in vitro expressed TAP2 is necessary and sufficient to allow functional complex formation with pre-existing TAP1. We propose that the observed assembly mechanism of TAP protects newly synthesized TAP2 from rapid degradation and controls the number of transport active transporter molecules. Our findings open up new possibilities to investigate functional and structural properties of TAP and provide a powerful model system to address the biosynthetic assembly of oligomeric transmembrane proteins in the ER.  相似文献   
54.
The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions.  相似文献   
55.
Degradation of glucose has been implicated in acetate production in rice field soil, but the abundance of glucose, the temporal change of glucose turnover, and the relationship between glucose and acetate catabolism are not well understood. We therefore measured the pool sizes of glucose and acetate in rice field soil and investigated the turnover of [U-14C]glucose and [2-14C]acetate. Acetate accumulated up to about 2 mM during days 5 to 10 after flooding of the soil. Subsequently, methanogenesis started and the acetate concentration decreased to about 100 to 200 μM. Glucose always made up >50% of the total monosaccharides detected. Glucose concentrations decreased during the first 10 days from 90 μM initially to about 3 μM after 40 days of incubation. With the exception at day 0 when glucose consumption was slow, the glucose turnover time was in the range of minutes, while the acetate turnover time was in the range of hours. Anaerobic degradation of [U-14C]glucose released [14C]acetate and 14CO2 as the main products, with [14C]acetate being released faster than 14CO2. The products of [2-14C]acetate metabolism, on the other hand, were 14CO2 during the reduction phase of soil incubation (days 0 to 15) and 14CH4 during the methanogenic phase (after day 15). Except during the accumulation period of acetate (days 5 to 10), approximately 50 to 80% of the acetate consumed was produced from glucose catabolism. However, during the accumulation period of acetate, the rate of acetate production from glucose greatly exceeded that of acetate consumption. Under steady-state conditions, up to 67% of the CH4 was produced from acetate, of which up to 56% was produced from glucose degradation.  相似文献   
56.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   
57.
The growth-promoting and root-colonizing endophyte Piriformospora indica induces camalexin and the expression of CYP79B2, CYP79B3, CYP71A13, PAD3, and WRKY33 required for the synthesis of indole-3-acetaldoxime (IAOx)-derived compounds in the roots of Arabidopsis seedlings. Upregulation of the mRNA levels by P. indica requires cytoplasmic calcium elevation and mitogen-activated protein kinase 3 but not root-hair-deficient 2, radical oxygen production, or the 3-phosphoinositide-dependent kinase 1/oxidative signal-inducible 1 pathway. Because P. indica-mediated growth promotion is impaired in cyp79B2 cyp79B3 seedlings, while pad3 seedlings-which do not accumulate camalexin-still respond to the fungus, IAOx-derived compounds other than camalexin (e.g., indole glucosinolates) are required during early phases of the beneficial interaction. The roots of cyp79B2 cyp79B3 seedlings are more colonized than wild-type roots, and upregulation of the defense genes pathogenesis-related (PR)-1, PR-3, PDF1.2, phenylalanine ammonia lyase, and germin indicates that the mutant responds to the lack of IAOx-derived compounds by activating other defense processes. After 6 weeks on soil, defense genes are no longer upregulated in wild-type, cyp79B2 cyp79B3, and pad3 roots. This results in uncontrolled fungal growth in the mutant roots and reduced performance of the mutants. We propose that a long-term harmony between the two symbionts requires restriction of root colonization by IAOx-derived compounds.  相似文献   
58.
59.
It has been shown that prolonged exposure to a human face leads to shape-selective visual aftereffects. It seems that these face-specific aftereffects (FAEs) have multiple components, related to the adaptation of earlier and higher level processing of visual stimuli. The largest magnitude of FAE, using long-term adaptation periods, is usually observed at the retinotopic position of the preceding adaptor stimulus. However, FAE is also detected, to a smaller degree, at other retinal positions in a spatially invariant way and this component depends less on the adaptation duration. Several lines of evidences suggest that while the position-specific FAE involves lower level areas of the ventral processing stream, the position-invariant FAE depends on the activation of higher level face-processing areas and the fusiform gyrus in particular. In the present paper, we summarize the available behavioural, electrophysiological and neuroimaging results regarding the spatial selectivity of FAE and discuss their implications for the visual stability of object representations across saccadic eye movements.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号