首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15018篇
  免费   1152篇
  国内免费   1141篇
  17311篇
  2024年   35篇
  2023年   180篇
  2022年   478篇
  2021年   835篇
  2020年   491篇
  2019年   601篇
  2018年   628篇
  2017年   525篇
  2016年   620篇
  2015年   894篇
  2014年   1069篇
  2013年   1200篇
  2012年   1399篇
  2011年   1252篇
  2010年   774篇
  2009年   683篇
  2008年   751篇
  2007年   623篇
  2006年   605篇
  2005年   486篇
  2004年   429篇
  2003年   330篇
  2002年   344篇
  2001年   312篇
  2000年   254篇
  1999年   249篇
  1998年   165篇
  1997年   130篇
  1996年   133篇
  1995年   125篇
  1994年   138篇
  1993年   92篇
  1992年   96篇
  1991年   70篇
  1990年   66篇
  1989年   58篇
  1988年   56篇
  1987年   31篇
  1986年   33篇
  1985年   19篇
  1984年   23篇
  1983年   12篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1933年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.  相似文献   
992.
Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4) is a required cofactor for nitric oxide (NO) production by endothelial NO synthase (eNOS). Hyperglycemia (HG) leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs) were co-cultured with endothelial cells (ECs) and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor) or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis) in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.  相似文献   
993.
994.
The amino acid composition of Nephila clavipes dragline silk fiber was determined by conducting 1H nuclear magnetic resonance (NMR) spectroscopy experiments on acid-hydrolyzed material. N. clavipes dragline silk was found to consist of 43.0 ± 0.6% Gly, 29.3 ± 0.2% Ala, 9.1 ± 0.1% Glx, 4.0 ± 0.1% Leu, 3.3 ± 0.1% Tyr, 3.4 ± 0.2% Ser, 2.7 ± 0.1% Pro, 2.1 ± 0.1% Arg, 1.07 ± 0.05% Asx, 0.96 ± 0.05% Val, 0.48 ± 0.03% Thr, 0.35 ± 0.03% Phe, and 0.28 ± 0.03% Ile. Compared with standard chromatography-based amino acid analysis (AAA), the chemical resolution of NMR allows for an amino acid solution to be characterized without separation and is shown to provide considerably higher precision. This allows for more accurate statistics on the variability of amino acids in spider dragline silk. In general, this 1H NMR AAA technique is applicable to a large range of proteins and peptides for precise composition characterization, especially when the precise content of a minor component is critical and relatively large amounts of sample are available (microgram to milligram quantities).  相似文献   
995.
This study, using mouse embryonic fibroblast (MEF) cells derived from ROCK1−/− and ROCK2−/− mice, is designed to dissect roles for ROCK1 and ROCK2 in regulating actin cytoskeleton reorganization induced by doxorubicin, a chemotherapeutic drug. ROCK1−/− MEFs exhibited improved actin cytoskeleton stability characterized by attenuated periphery actomyosin ring formation and preserved central stress fibers, associated with decreased myosin light chain 2 (MLC2) phosphorylation but preserved cofilin phosphorylation. These effects resulted in a significant reduction in cell shrinkage, detachment, and predetachment apoptosis. In contrast, ROCK2−/− MEFs showed increased periphery membrane folding and impaired cell adhesion, associated with reduced phosphorylation of both MLC2 and cofilin. Treatment with inhibitor of myosin (blebbistatin), inhibitor of actin polymerization (cytochalasin D), and ROCK pan-inhibitor (Y27632) confirmed the contributions of actomyosin contraction and stress fiber instability to stress-induced actin cytoskeleton reorganization. These results support a novel concept that ROCK1 is involved in destabilizing actin cytoskeleton through regulating MLC2 phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing actin cytoskeleton through regulating cofilin phosphorylation. Consequently, ROCK1 and ROCK2 can be functional different in regulating stress-induced stress fiber disassembly and cell detachment.  相似文献   
996.

Background

With a wide range of applications, titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities. Recently, in the field of nanomedicine, intravenous injection of TiO2 nanoparticulate carriers directly into the bloodstream has raised public concerns on their toxicity to humans.

Methods

In this study, mice were injected intravenously with a single dose of TiO2 NPs at varying dose levels (0, 140, 300, 645, or 1387 mg/kg). Animal mortality, blood biochemistry, hematology, genotoxicity and histopathology were investigated 14 days after treatment.

Results

Death of mice in the highest dose (1387 mg/kg) group was observed at day two after TiO2 NPs injection. At day 7, acute toxicity symptoms, such as decreased physical activity and decreased intake of food and water, were observed in the highest dose group. Hematological analysis and the micronucleus test showed no significant acute hematological or genetic toxicity except an increase in the white blood cell (WBC) count among mice 645 mg/kg dose group. However, the spleen of the mice showed significantly higher tissue weight/body weight (BW) coefficients, and lower liver and kidney coefficients in the TiO2 NPs treated mice compared to control. The biochemical parameters and histological tissue sections indicated that TiO2 NPs treatment could induce different degrees of damage in the brain, lung, spleen, liver and kidneys. However, no pathological effects were observed in the heart in TiO2 NPs treated mice.

Conclusions

Intravenous injection of TiO2 NPs at high doses in mice could cause acute toxicity effects in the brain, lung, spleen, liver, and kidney. No significant hematological or genetic toxicity was observed.  相似文献   
997.
Preeclampsia is a serious complication of pregnancy, which affects 2–8% of all pregnancies and is one of the leading causes of maternal and perinatal mortality and morbidity worldwide. To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, we used high-resolution LC-MS/MS technologies to construct a comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane in normal and preeclamptic pregnancies. A total of 1027 N-glyco- and 2094 phospho- sites were detected in human placental plasma membrane, and 5 N-glyco- and 38 phospho- proteins, respectively, with differentially expression were definitively identified between control and preeclamptic placental plasma membrane. Further bioinformatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes occurring during pathological changes of preeclamptic placental plasma membrane.  相似文献   
998.
Stress granules (SGs) are dynamic cytosolic aggregates containing messenger ribonucleoproteins and target poly-adenylated (A)-mRNA. A key component of SGs is Ras-GAP SH3 domain binding protein-1 (G3BP1), which in part mediates protein-protein and protein-RNA interactions. SGs are modulated during infection by several viruses, however, the function and significance of this process remains poorly understood. In this study, we investigated the interplay between SGs and Coxsackievirus type B3 (CVB3), a member of the Picornaviridae family. Our studies demonstrated that SGs were formed early during CVB3 infection; however, G3BP1-positive SGs were actively disassembled at 5 hrs post-infection, while poly(A)-positive RNA granules persisted. Furthermore, we confirmed G3BP1 cleavage by 3Cpro at Q325. We also demonstrated that overexpression of G3BP1-SGs negatively impacted viral replication at the RNA, protein, and viral progeny levels. Using electron microscopy techniques, we showed that G3BP1-positive SGs localized near mitochondrial surfaces. Finally, we provided evidence that the C-terminal cleavage product of G3BP1 inhibited SG formation and promoted CVB3 replication. Taken together, we conclude that CVB3 infection selectively targets G3BP1-SGs by cleaving G3BP1 to produce a dominant-negative fragment that further inhibits G3BP1-SG formation and facilitates viral replication.  相似文献   
999.
Rosiglitazone (RGL), a synthetic agonist for peroxisome proliferator activated receptor γ (PPARγ), exhibits a potent anti-inflammatory activity by attenuating local infiltration of neutrophils and monocytes in the renal interstitium. To evaluate the mechanisms that account for inhibiting inflammatory cells infiltration, we investigated the effect of RGL on chemokines secretion and nuclear factor-kappa B (NF-κB) activation in human renal proximal tubular cells (PTCs). We demonstrated that RGL significantly inhibited lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) production in a dose-dependent manner, without appreciable cytotoxicity. Chromatin immunoprecipitation (ChIP) assays clearly revealed that, RGL inhibited p65 binding to IL-8/MCP-1 gene promoters in LPS-stimulated PTCs. Interestingly, further experiments showed RGL reversed LPS-induced nuclear receptor corepressor (NCoR) degradation. In addition, knockdown of protein inhibitor of activated STAT1 (PIAS1), an indispensable small ubiquitin-like modifier (SUMO) ligase, abrogated the effects of RGL on antagonizing LPS-induced IL-8/MCP-1 overexpression and NCoR degradation. These findings suggest that, RGL activates PPARγ SUMOylation, inhibiting NCoR degradation and NF-κB activation in LPS-stimulated PTCs, which in turn decrease chemokines expression. The results unveil a new mechanism triggered by RGL for prevention of tubular inflammatory injury.  相似文献   
1000.
To explore whether a neural modulation of muscle integrins' extracellular ligand interactions contributes to synapse induction, we compared the distributions of beta1-integrins and basal lamina proteins on Xenopus myotomal myocytes developing in culture. beta1-Integrins formed numerous organized aggregates scattered over the entire muscle surface, with particularly dense accumulations at specialized sites resembling myotendinous and neuromuscular junctions. Integrin aggregates on muscle cells differed from those on surrounding fibroblasts and epithelial cells, both in their lack of response to cross-linking by multivalent ligands and in their consistent association with the cells' own extracellular matrices. Muscle integrin clusters were usually associated with congruent basal lamina accumulations containing laminin and a heparan sulfate proteoglycan (HSPG), sometimes including fibronectin and vitronectin acquired from the surrounding medium. Immediately prior to synaptic differentiation, any existing laminin and HSPG accumulations along the path of cell contact were eliminated, disrupting otherwise stable laminin-integrin complexes. This apparently proteolytic modulation of integrins' extracellular ligand interactions was soon followed by the accumulation of new congruent accumulations of laminin and HSPG in the developing synaptic basal lamina. Combining these results with earlier findings, we consider the possibility that postsynaptic differentiation is induced, at least in part, by the proteolytic disruption of integrin-ligand complexes at sites of nerve-muscle contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号