首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18981篇
  免费   1399篇
  国内免费   1218篇
  2024年   42篇
  2023年   256篇
  2022年   540篇
  2021年   924篇
  2020年   566篇
  2019年   807篇
  2018年   800篇
  2017年   562篇
  2016年   833篇
  2015年   1105篇
  2014年   1350篇
  2013年   1444篇
  2012年   1676篇
  2011年   1518篇
  2010年   968篇
  2009年   935篇
  2008年   1044篇
  2007年   974篇
  2006年   798篇
  2005年   683篇
  2004年   528篇
  2003年   518篇
  2002年   437篇
  2001年   343篇
  2000年   299篇
  1999年   289篇
  1998年   164篇
  1997年   158篇
  1996年   155篇
  1995年   117篇
  1994年   84篇
  1993年   70篇
  1992年   111篇
  1991年   82篇
  1990年   69篇
  1989年   53篇
  1988年   45篇
  1987年   43篇
  1986年   40篇
  1985年   51篇
  1984年   8篇
  1983年   17篇
  1982年   9篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1974年   5篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
851.
Despite advances in aging research, a multitude of aging models, and empirical evidence for diverse senescence patterns, understanding of the biological processes that shape senescence is lacking. We show that senescence of an isogenic Escherichia coli bacterial population results from two stochastic processes. The first process is a random deterioration process within the cell, such as generated by random accumulation of damage. This primary process leads to an exponential increase in mortality early in life followed by a late age mortality plateau. The second process relates to the stochastic asymmetric transmission at cell fission of an unknown factor that influences mortality. This secondary process explains the difference between the classical mortality plateaus detected for young mothers’ offspring and the near nonsenescence of old mothers’ offspring as well as the lack of a mother–offspring correlation in age at death. We observed that lifespan is predominantly determined by underlying stochastic stage dynamics. Surprisingly, our findings support models developed for metazoans that base their arguments on stage‐specific actions of alleles to understand the evolution of senescence. We call for exploration of similar stochastic influences that shape aging patterns beyond simple organisms.  相似文献   
852.
853.
854.
855.
856.
Recent research suggests that the first-line oral antidiabetes drug metformin may prevent gastric cancer progression and improve prognosis. Many studies have also shown that long noncoding RNAs (lncRNAs) play important roles in many biological processes. Therefore, we aimed to explore whether lncRNAs participate in the mechanisms by which metformin affects gastric cancer cells. In the current study, we found that metformin significantly inhibited the cellular functions of gastric cancer cells through Cell Counting Kit-8 and invasion assays. We found that lncRNA H19 was greatly downregulated in gastric cancer cells treated with metformin using lncRNA microassays. Based on bioinformatics analyses of the Oncomine and The Cancer Genome Atlas databases, H19 is shown to be overexpressed in gastric cancer tissues, with increased expression of H19 relating to advanced pathological tumor stage and pathological tumor node metastasis stage, indicating that H19 may be associated with the invasive ability of gastric cancer. We knocked down H19 in AGS and SGC7901 cell lines and found that knocked-down H19 could decrease gastric cancer cell invasion and that metformin could not further decrease invasion after the knock down. Moreover, H19 depletion increased AMPK activation and decreased MMP9 expression, and metformin could not further activate AMPK or decrease MMP9 in H19 knocked-down gastric cancer cells. In summary, metformin has a profound antitumor effect on gastric cancer cells, and H19 is a key component in the process of metformin suppressing gastric cancer cell invasion.  相似文献   
857.
858.
Osteoporosis, arthritis, Peget's disease, bone tumor, periprosthetic joint infection, and periprosthetic loosening have a common characteristic of osteolysis, which is characterized by the enhanced osteoclastic bone resorptive function. At present, the treatment target of these diseases is to interfere with osteoclastic formation and function. Scutellarein (Scu), a flavonoids compound, can inhibit the progress of tumor and inflammation. However, the role of Scu in inflammatory osteolysis isn’t elucidated clearly. Our study showed that Scu inhibited bone destruction induced by LPS in vivo and OC morphology and function induced by RANKL in vitro. Mechanistic studies revealed that Scu suppressed osteoclastic marker gene expression by RANKL-induced, such as Ctsk9, Mmp9, Acp5, and Atp6v0d2. In addition, we found that the inhibition effects of osteoclastogenesis and bone resorption function of Scu were mediated via attenuating NF-κB and NFAT signaling pathways. In conclusion, the results showed that Scu may become a potential new drug for the treatment of inflammatory osteolysis.  相似文献   
859.
MiR-137 has been identified as potential hepatocellular carcinoma (HCC) prognostic biomarkers. Highly relevant HCC prognostic biomarkers may be derived from combinations of miR-137 with its target genes involved in the regulation of liver microenvironment. This study aimed at the discovery of such a combination with improved HCC prognosis performance than miR-137 or its target gene alone in a significantly higher number of HCC patients than previous studies. Analysis of the differentially expressed micro RNAs (miRNAs) between cancer and noncancer tissues reconfirmed miR-137 to be among the most relevant prognostic miRNAs and the data of 375 HCC patients and 50 normal cases were from the Cancer Genome Atlas (TCGA) data sets. Target genes were identified by the established search methods and Kaplan–Meier survival analysis of HCC patients was used to evaluate the overall survival (OS) and recurrence-free survival (RFS). Cox proportional hazards regression indicated that the miR-137 and its target gene AFM combination is an independent prognostic factor for the OS and RFS in HCC. In vitro experiments validated that miR-137 could bind to 3′-untranslated region of the AFM and promote the invasion and metastasis of HCC cell lines. The expressions of miR-137 and its liver microenvironment regulatory target gene AFM in combination significantly correlated with HCC progression in a higher number of patients than in previous studies, which suggested their potential as prognostic biomarkers for HCC.  相似文献   
860.
MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle–associated genes cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 (IGF1) and downregulated the expression of key proteins in the PI3K/AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号