首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76151篇
  免费   5543篇
  国内免费   4866篇
  86560篇
  2024年   156篇
  2023年   1034篇
  2022年   2392篇
  2021年   4071篇
  2020年   2617篇
  2019年   3231篇
  2018年   3166篇
  2017年   2297篇
  2016年   3256篇
  2015年   4809篇
  2014年   5543篇
  2013年   5983篇
  2012年   7021篇
  2011年   6156篇
  2010年   3710篇
  2009年   3333篇
  2008年   3723篇
  2007年   3355篇
  2006年   2906篇
  2005年   2380篇
  2004年   1957篇
  2003年   1653篇
  2002年   1399篇
  2001年   1230篇
  2000年   1218篇
  1999年   1121篇
  1998年   661篇
  1997年   655篇
  1996年   666篇
  1995年   617篇
  1994年   543篇
  1993年   376篇
  1992年   568篇
  1991年   435篇
  1990年   406篇
  1989年   282篇
  1988年   244篇
  1987年   234篇
  1986年   166篇
  1985年   193篇
  1984年   109篇
  1983年   117篇
  1982年   71篇
  1981年   58篇
  1980年   37篇
  1979年   61篇
  1977年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
102.
103.
Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a’s of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born–Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe–O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O–O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions.  相似文献   
104.
Selenite and ebselen supplementation has been shown to possess anti-cataract potential in some experimental animal models of cataract, however, the underlying mechanisms remain unclear. The present study was designed to evaluate the anti-cataract effects and the underlying mechanisms of selenite and ebselen supplementation on galactose induced cataract in rats, a common animal model of sugar cataract. Transmission electron microscopy images of lens fiber cells (LFC) and lens epithelial cells (LEC) were observed in d-galactose-induced experimental cataractous rats treated with or without selenite and ebselen, also redox homeostasis and expression of proteins such as selenoprotein R (SELR), 15kD selenoprotein (SEP15), superoxide dismutase 1 (SOD1), catalase (CAT), β-crystallin protein, aldose reductase (AR) and glucose-regulated protein 78 (GRP78) were estimated in the lenses. The results showed that d-galactose injection injured rat lens and resulted in cataract formation; however, selenite and ebselen supplementation markedly alleviated ultrastructural injury of LFC and LEC. Moreover, selenite and ebselen supplementation could mitigate the oxidative damage in rat lens and increase the protein expressions of SELR, SEP15, SOD1, CAT and β-crystallin, as well as decrease the protein expressions of AR and GRP78. Taken together, these findings for the first time reveal the anti-cataract potential of selenite and ebselen in galactosemic cataract, and provide important new insights into the anti-cataract mechanisms of selenite and ebselen in sugar cataract.  相似文献   
105.
106.
A cDNA clone was isolated after difference screening from cotyledons of two-week cold-treated Ammopiptanthus mongolicus. The full-length cDNA sequence [designated as AmCIP (A. mongolicus cold-induced protein) gene] was 806 bp long and contained a 465 bp open reading frame (ORF) encoding a 16.6 kD protein of 154 amino acids. Bioinformatic analyses indicated that CIP belongs to dehydrin family with the features of high hydrophilicity, a helix K-segment, a long Gly-rich region and a phosphorylatable tract of Ser as well as deficiency in Cys and Trp. The expression of CIP gene increased after two weeks of cold treatment and more expression was detected in radicle than in cotyledon. And PCR amplification of the AmCIP gene from genome of A. mongolicus revealed this gene has no intron. Function prediction suggested this protein seems to protect the stabilization of membrane structure and prevent macromolecular coagulation or sequestrate calcium ions by association or disassociation with membrane under low temperature conditions.  相似文献   
107.
J Liu  H E Takiff    H Nikaido 《Journal of bacteriology》1996,178(13):3791-3795
The lfrA gene cloned from chromosomal DNA of quinolone-resistant Mycobacterium smegmatis mc2-552 conferred low-level resistance to fluoroquinolones when present on multicopy plasmids. Sequence analysis suggested that lfrA encodes a membrane efflux pump of the major facilitator family (H. E. Takiff, M. Cimino, M. C. Musso, T. Weisbrod, R. Martinez, M. B. Delgado, L Salazar, B. R. Bloom, and W. R. Jacbos, Jr., Proc. Natl. Acad. Sci. USA 93:362-366, 1996). In this work, we studied the role of LfrA in the accumulation of fluoroquinolones by M. smegmatis. The steady-state accumulation level of a hydrophilic quinolone, norfloxacin, by M. smegmatis harboring a plasmid carrying the lfrA gene was about 50% of that by the parent strain but was increased to the same level as that of the parent strain by addition of a proton conductor, carbonyl cyanide m-chorophenylhydrazone. Norfloxacin efflux mediated by LfrA was competed for strongly by ciprofloxacin but not by nalidixic acid. Furthermore, we showed that portions of norfloxacin accumulated by starved cells were pumped out upon reenergization of the cells, and the rates of this efflux showed evidence of saturation at higher intracellular concentrations of the drug. These results suggest that the LfrA polypeptide catalyzes the active efflux of several quinolones.  相似文献   
108.
Morusin is a pure compound isolated from root bark of Morusaustralis (Moraceae). In this study, we demonstrated that morusin significantly inhibited the growth and clonogenicity of human colorectal cancer HT-29 cells. Apoptosis induced by morusin was characterized by accumulation of cells at the sub-G1 phase, fragmentation of DNA, and condensation of chromatin. Morusin also inhibited the phosphorylation of IKK-α, IKK-β and IκB-α, increased expression of IκB-α, and suppressed nuclear translocation of NF-κB and its DNA binding activity. Dephosphorylation of NF-κB upstream regulators PI3K, Akt and PDK1 was also displayed. In addition, activation of caspase-8, change of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO, and activation of caspase-9 and -3 were observed at the early time point. Downregulation in the expression of Ku70 and XIAP was exhibited afterward. Caspase-8 or wide-ranging caspase inhibitor suppressed morusin-induced apoptosis. Therefore, the antitumor mechanism of morusin in HT-29 cells may be via activation of caspases and inhibition of NF-κB.  相似文献   
109.
Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia  coli -expressed glutathione- S -transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein–GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号