首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13525篇
  免费   778篇
  国内免费   3篇
  14306篇
  2023年   74篇
  2022年   140篇
  2021年   250篇
  2020年   220篇
  2019年   269篇
  2018年   463篇
  2017年   387篇
  2016年   568篇
  2015年   652篇
  2014年   747篇
  2013年   1053篇
  2012年   1012篇
  2011年   1144篇
  2010年   633篇
  2009年   504篇
  2008年   737篇
  2007年   781篇
  2006年   774篇
  2005年   673篇
  2004年   572篇
  2003年   573篇
  2002年   510篇
  2001年   224篇
  2000年   186篇
  1999年   149篇
  1998年   113篇
  1997年   50篇
  1996年   46篇
  1995年   42篇
  1994年   44篇
  1993年   37篇
  1992年   34篇
  1991年   33篇
  1990年   27篇
  1989年   22篇
  1988年   19篇
  1987年   29篇
  1986年   16篇
  1985年   34篇
  1984年   33篇
  1983年   20篇
  1982年   26篇
  1981年   19篇
  1980年   23篇
  1979年   27篇
  1978年   22篇
  1977年   25篇
  1973年   20篇
  1953年   18篇
  1952年   41篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
61.
The aim of this study was to determine whether testicular cells of mice with the mosaic mutation, associated with abnormal copper metabolism, are able to aromatize androgens to estrogens, and what is the putative role of estrogens in the gonad of the mutant male. Mosaic is a lethal mutation; affected males usually die on about day 16. Those, which survive to reach sexual maturity, are valuable research subjects. In testes of young and adult mutants, histological analysis revealed the presence of many degenerating seminiferous tubules besides normal-looking ones. Additionally, high numbers of apoptotic germ cells were observed, especially in young mutants when compared with the controls. Positive immunostaining for aromatase was found in cultured Leydig cells and testicular sections of both control and mutant males. The intensity of immunostaining was always stronger in the mosaic mice. In both groups, Western-blot analysis revealed the presence of aromatase protein as a single band of approximately 55 kDa. In the mosaic males, levels of testosterone in cultured Leydig cells, whole testes, and in blood plasma were lower than in those of the respective controls. On the contrary, estradiol concentrations were always higher in the mutants. Both in vivo and in vitro studies indicate that morphological and functional changes in the testes of the mosaic mice mainly result from defective copper metabolism. The higher level of endogenous estrogens can additionally enhance morphological alterations within the testes. It seems also likely that excess estrogens may affect the survival rate of the mosaic males.  相似文献   
62.
Wine consumption delivers macroelements and microelements necessary for the proper metabolism. On the other hand, wine can be an important source of toxic metals. The aim of this study was to estimate the concentrations of Ca, Cd, Cu, Fe, Hg, Mg, Ni, Pb, and Zn in the Slovak and non-Slovak wines. The concentration of metals was evaluated with respect to the type, the alcohol content, and the age of Slovak wine. The general scheme of concentrations found was as follows Ca > Mg > Fe > Zn > Pb > Cd > Ni > Cu > Hg. The type of wine and the alcohol content do not have a significant impact on metal concentrations. Also, the age of wine has no influence on the mean concentration of metals, except for Zn. Metal concentrations in Slovak and non-Slovak wines indicate similar contents of metals, except for Ni. The contribution to both dietary reference values (DRVs) and provisional tolerable weekly intake (PTWI) evaluations in the Slovak wine suggested low dietary exposure to Ca, Cu, Fe, Mg, Ni, Zn, Cd, Hg, and Pb, respectively. However, we do not suggest that the consumption of all Slovak wines is healthy. The maximum Pb concentrations in Slovak wines exceed the maximum permitted level proposed by the European Commission. This might be proved by the results of the margin of the exposure (MOE) value evaluation in the samples containing the maximum Pb concentrations, showing a high risk of CKD and SBP in high and extreme consumption groups.  相似文献   
63.
64.
65.
66.
67.
68.
The effect of ischemic preconditioning and superoxide dismutase (SOD) on endothelial glycocalyx and endothelium-dependent vasodilation in the postischemic isolated guinea-pig hearts was examined. Seven groups of hearts were used: group 1 underwent sham aerobic perfusion; group 2 was subjected to 40 min global ischemia without reperfusion; group 3, 40 min ischemia followed by 40 min reperfusion; group 4 was preconditioned with three cycles of 5 min global ischemia followed by 5 min of reperfusion (IPC), prior to 40 min ischemia; group 5 was subjected to IPC prior to standard ischemia/reperfusion; group 6 underwent standard ischemia/reperfusion and SOD infusion (150 U/ml) was begun 5 min before 40 min ischemia and continued during the initial 5 min of the reperfusion period; group 7 was subjected to 80 min aerobic perfusion with NO-synthase inhibitor, L-NAME, to produce a model of endothelial dysfunction independent from the ischemia/reperfusion. Coronary flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were used as measures of endothelium-dependent and endothelium-independent vascular function, respectively. Reduction in coronary flow caused by NO-synthase inhibitor, L-NAME, served as a measure of a basal endothelium-dependent vasodilator tone. After completion of each experimental protocol, the hearts were stained with ruthenium red or lanthanum chloride for electron microscopy evaluation of the endothelial glycocalyx. While ischemia led only to a slightly flocculent appearance of the glycocalyx, in ischemia/reperfused hearts the glycocalyx was disrupted, suggesting that it is the reperfusion injury which leads to the glycocalyx injury. Moreover, the coronary flow responses to ACh and L-NAME were impaired, while the responses to SNP were unchanged in the ischemia/reperfused hearts. The disruption of the glycocalyx and the deterioration of ACh and L-NAME responses was prevented by IPC. In addition, the alterations in the glycocalyx and the impairment of ACh responses were prevented by SOD. The glycocalyx appeared to be not changed in the hearts subjected to 80 min aerobic perfusion with L-NAME. In conclusion: (1) the impairment of the endothelium-dependent coronary vasodilation is paralleled by the endothelial glycocalyx disruption in the postischemic guinea-pig hearts; (2) both these changes are prevented by SOD, suggesting the role of free radicals in the mechanism of their development; (3) both changes are prevented by IPC. We hypothesize, therefore, that alterations in the glycocalyx contribute to the mechanism of the endothelial dysfunction in the postischemic hearts.  相似文献   
69.
Cells derived from the amniotic foetal membrane of human term placenta have drawn particular attention mainly for their plasticity and immunological properties, which render them interesting for stem-cell research and cell-based therapeutic applications. In particular, we have previously demonstrated that amniotic mesenchymal tissue cells (AMTC) inhibit lymphocyte proliferation in vitro and suppress the generation and maturation of monocyte-derived dendritic cells. Here, we show that AMTC also significantly reduce the proliferation of cancer cell lines of haematopoietic and non-haematopoietic origin, in both cell-cell contact and transwell co-cultures, therefore suggesting the involvement of yet-unknown inhibitory soluble factor(s) in this 'cell growth restraint'. Importantly, we provide evidence that the anti-proliferative effect of AMTC is associated with induction of cell cycle arrest in G0/G1 phase. Gene expression analyses demonstrate that AMTC can down-regulate cancer cells' mRNA expression of genes associated with cell cycle progression, such as cyclins (cyclin D2, cyclin E1, cyclin H) and cyclin-dependent kinase (CDK4, CDK6 and CDK2), whilst they up-regulate cell cycle negative regulator such as p15 and p21, consistent with a block in G0/G1 phase with no progression to S phase. Taken together, these findings warrant further studies to investigate the applicability of these cells for controlling cancer cell proliferation in vivo.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号