全文获取类型
收费全文 | 995篇 |
免费 | 50篇 |
专业分类
1045篇 |
出版年
2023年 | 4篇 |
2022年 | 9篇 |
2021年 | 33篇 |
2020年 | 13篇 |
2019年 | 26篇 |
2018年 | 31篇 |
2017年 | 16篇 |
2016年 | 23篇 |
2015年 | 50篇 |
2014年 | 52篇 |
2013年 | 64篇 |
2012年 | 89篇 |
2011年 | 87篇 |
2010年 | 63篇 |
2009年 | 45篇 |
2008年 | 62篇 |
2007年 | 72篇 |
2006年 | 53篇 |
2005年 | 34篇 |
2004年 | 37篇 |
2003年 | 31篇 |
2002年 | 54篇 |
2001年 | 11篇 |
2000年 | 6篇 |
1999年 | 8篇 |
1998年 | 12篇 |
1997年 | 3篇 |
1996年 | 5篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1992年 | 4篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1987年 | 5篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1976年 | 2篇 |
1975年 | 3篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1971年 | 2篇 |
1967年 | 2篇 |
1966年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有1045条查询结果,搜索用时 15 毫秒
11.
12.
Brockstedt U Uzarowska A Montpetit A Pfau W Labuda D 《Biochemical and biophysical research communications》2004,313(4):1004-1008
The modification of cellular DNA by environmental substances is thought to be a crucial event in chemical induced carcinogenesis. Among the environmental carcinogens, aromatic amines are known for the fact that they can induce several types of cancers through the formation of so-called DNA adducts. We took advantage of the potential of the SELEX method to select for highly specific RNA ligands that recognize specific genotoxic aromatic amines. The aromatic amine 4,4'-methylenedianiline (MDA) was used as a target. Following in vitro selection, we obtained specific MDA-binding RNA molecules based on an affinity chromatography assay. These results open the possibility of using the SELEX technique to generate RNA molecules as diagnostic tools for the detection of DNA damaging compounds and ultimately DNA adducts. 相似文献
13.
Christoph Dockter Damian Gruszka Ilka Braumann Arnis Druka Ilze Druka Jerome Franckowiak Simon P. Gough Anna Janeczko Marzena Kurowska Joakim Lundqvist Udda Lundqvist Marek Marzec Izabela Matyszczak André H. Müller Jana Oklestkova Burkhard Schulz Shakhira Zakhrabekova Mats Hansson 《Plant physiology》2014,166(4):1912-1927
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.The introduction of dwarfing genes to increase culm sturdiness of cereal crops was crucial for the first Green Revolution (Hedden, 2003). The culms of tall cereal crops were not strong enough to support the heavy spikes of high-yielding cultivars, especially under high-nitrogen conditions. As a result, plants fell over, a process known as lodging. This caused losses in yield and grain-quality issues attributable to fungal infections, mycotoxin contamination, and preharvest germination (Rajkumara, 2008). Today, a second Green Revolution is on its way, to revolutionize the agricultural sector and to ensure food production for a growing world population. Concurrently, global climate change is expected to cause more frequent occurrences of extreme weather conditions, including thunderstorms with torrential rain and strong winds, thus promoting cereal culm breakage (Porter and Semenov, 2005; National Climate Assessment Development Advisory Committee, 2013). Accordingly, plant architectures that resist lodging remain a major crop-improvement goal and identification of genes that regulate culm length is required to enhance the genetic toolbox in order to facilitate efficient marker-assisted breeding. The mutations and the corresponding genes that enabled the Green Revolution in wheat (Triticum aestivum) and rice (Oryza sativa) have been identified (Hedden, 2003). They all relate to gibberellin metabolism and signal transduction. It is now known that other plant hormones such as brassinosteroids are also involved in the regulation of plant height. Knowledge of the molecular mechanisms underlying the effects of the two hormones on cell elongation and division has mainly come from studies in Arabidopsis (Arabidopsis thaliana; Bai et al., 2012). Mutant-based breeding strategies to fine-tune brassinosteroid metabolism and signaling pathways could improve lodging behavior in modern crops (Vriet et al., 2012) such as barley (Hordeum vulgare), which is the fourth most abundant cereal in both area and tonnage harvested (http://faostat.fao.org).A short-culm phenotype in crops is often accompanied by other phenotypic changes. Depending on the penetrance of such pleiotropic characters, but also the parental background and different scientific traditions and expertise, short-culmed barley mutants were historically divided into groups, such as brachytic (brh), breviaristatum (ari), dense spike (dsp), erectoides (ert), semibrachytic (uzu), semidwarf (sdw), or slender dwarf (sld; Franckowiak and Lundqvist, 2012). Subsequent mutant characterization was limited to intragroup screens and very few allelism tests between mutants from different groups have been reported (Franckowiak and Lundqvist, 2012). Although the total number of short-culm barley mutants exceeds 500 (Franckowiak and Lundqvist, 2012), very few have been characterized at the DNA level (Helliwell et al., 2001; Jia et al., 2009; Chandler and Harding, 2013; Houston et al., 2013). One of the first identified haplotypes was uzu barley (Chono et al., 2003). The Uzu1 gene encodes the brassinosteroid hormone receptor and is orthologous to the BRASSINOSTEROID-INSENSITIVE1 (BRI1) gene of Arabidopsis, a crucial promoter of plant growth (Li and Chory, 1997). The uzu1.a allele has been used in East Asia for over a century and is presently distributed in winter barley cultivars in Japan, the Korean peninsula, and China (Saisho et al., 2004). Its agronomic importance comes from the short and sturdy culm that provides lodging resistance, and an upright plant architecture that tolerates dense planting.Today, more than 50 different brassinosteroids have been identified in plants (Bajguz and Tretyn, 2003). Most are intermediates of the complex biosynthetic pathway (Shimada et al., 2001). Approximately nine genes code for the enzymes that participate in the biosynthetic pathway from episterol to brassinolide (Supplemental Fig. S1). Brassinosteroid deficiency is caused by down-regulation of these genes, but it can also be associated with brassinosteroid signaling. The first protein in the signaling network is the brassinosteroid receptor encoded by BRI1 (Li and Chory, 1997; Kim and Wang, 2010). In this work, we show how to visually identify brassinosteroid-mutant barley plants and we describe more than 20 relevant mutations in four genes of the brassinosteroid biosynthesis and signaling pathways that can be used in marker-assisted breeding strategies. 相似文献
14.
Chilling ofArabidopsis thaliana (L.) Heynh. callus tissue to 4 °C led to conditions of oxidative stress, as indicated by increased levels of the products of peroxidative damage to cell membranes. Cellular H2O2 was also observed to increase initially upon chilling but by day 8 cellular levels had declined to below control levels. Although levels of catalase activity remained similar to those in unchilled tissue, activity of ascorbate peroxidase increased between days 4 and 8 of chilling to 4 °C. In callus held at 23 °C, levels of reduced glutathione remained static whereas they rose in callus held at 4 °C. Levels of oxidised glutathione were initially low but increased significantly by day 4 in the chilled callus. At 23 °C, however, levels of oxidised glutathione remained low. Between days 1 and 3 at 4 °C, levels of glutathione reductase activity increased but by day 8 glutathione reductase activity was similar to that in cells held at 23 °C. Exposure of callus to abscisic acid at 23 °C also led to increased activities of ascorbate peroxidase and glutathione reductase.Abbreviations ABA
abscisic acid
- GSH
reduced glutathione
- GSSG
oxidised glutathione
- TTC
2,35-triphenyltetrazolium chloride
This work is supported by a grant from the Biotechnology and Biological Sciences Research Council. 相似文献
15.
Crystals of virus-like particles (VLP) are described as occurring in the nuclei of damaged tegumentary cytons from carcasses of Taenia solium metacestodes that had been stripped of their teguments. The VLP are grouped as parallel lines of round particles in an hexagonal packaging of spheroids forming small or large crystals. The individual particles have an external diameter of 36-37 nm and a wall of 5-6 nm thick, which surround a cavity of lower electron density. As identical crystals were also observed in normal tissues of T. solium and of T. crassiceps, it is suggested that both species of cysticerci are normal carriers of a similar species of virus. The possible biological implications of this condition are discussed. 相似文献
16.
Oliver S. Grosser Dennis Kupitz Juri Ruf Damian Czuczwara Ingo G. Steffen Christian Furth Markus Thormann David Loewenthal Jens Ricke Holger Amthauer 《PloS one》2015,10(9)
Background
Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images.Methodology/Principal Findings
Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001).Conclusion/Significance
In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. 相似文献17.
18.
Birck C Damian L Marty-Detraves C Lougarre A Schulze-Briese C Koehl P Fournier D Paquereau L Samama JP 《Journal of molecular biology》2004,344(5):1409-1420
A newly defined family of fungal lectins displays no significant sequence similarity to any protein in the databases. These proteins, made of about 140 amino acid residues, have sequence identities ranging from 38% to 65% and share binding specificity to N-acetyl galactosamine. One member of this family, the lectin XCL from Xerocomus chrysenteron, induces drastic changes in the actin cytoskeleton after sugar binding at the cell surface and internalization, and has potent insecticidal activity. The crystal structure of XCL to 1.4 A resolution reveals the architecture of this new lectin family. The fold of the protein is not related to any of the several lectin folds documented so far. Unexpectedly, the structure similarity is significant with actinoporins, a family of pore-forming toxins. The specific structural features and sequence signatures in each protein family suggest a potential sugar binding site in XCL and a possible evolutionary relationship between these proteins. Finally, the tetrameric assembly of XCL reveals a complex network of protomer-protomer interfaces and generates a large, hydrated cavity of 1000 A3, which may become accessible to larger solutes after a small conformational change of the protein. 相似文献
19.
Sree V. Chintapalli Gaurav Bhardwaj Reema Patel Natasha Shah Randen L. Patterson Damian B. van Rossum Andriy Anishkin Sean H. Adams 《PloS one》2015,10(6)
The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. 相似文献
20.