首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2205篇
  免费   182篇
  国内免费   217篇
  2024年   2篇
  2023年   35篇
  2022年   75篇
  2021年   111篇
  2020年   82篇
  2019年   120篇
  2018年   107篇
  2017年   80篇
  2016年   96篇
  2015年   142篇
  2014年   147篇
  2013年   147篇
  2012年   211篇
  2011年   172篇
  2010年   103篇
  2009年   83篇
  2008年   113篇
  2007年   87篇
  2006年   77篇
  2005年   73篇
  2004年   39篇
  2003年   48篇
  2002年   55篇
  2001年   35篇
  2000年   32篇
  1999年   48篇
  1998年   20篇
  1997年   32篇
  1996年   20篇
  1995年   29篇
  1994年   30篇
  1993年   16篇
  1992年   35篇
  1991年   22篇
  1990年   19篇
  1989年   14篇
  1988年   11篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   11篇
  1983年   6篇
  1982年   1篇
  1981年   3篇
排序方式: 共有2604条查询结果,搜索用时 15 毫秒
61.
Yimei Li  Ying Yuan 《Biometrics》2020,76(4):1364-1373
Pediatric phase I trials are usually carried out after the adult trial testing the same agent has started, but not completed yet. As the pediatric trial progresses, in light of the accrued interim data from the concurrent adult trial, the pediatric protocol often is amended to modify the original pediatric dose escalation design. In practice, this is done frequently in an ad hoc way, interrupting patient accrual and slowing down the trial. We developed a pediatric-continuous reassessment method (PA-CRM) to streamline this process, providing a more efficient and rigorous method to find the maximum tolerated dose for pediatric phase I oncology trials. We use a discounted joint likelihood of the adult and pediatric data, with a discount parameter controlling information borrowing between pediatric and adult trials. According to the interim adult and pediatric data, the discount parameter is adaptively updated using the Bayesian model averaging method. Numerical study shows that the PA-CRM improves the efficiency and accuracy of the pediatric trial and is robust to various model assumptions.  相似文献   
62.
This study investigated the role of microRNA-95 (miR-95) in gastric cancer (GC) and to elucidate the underlying mechanism. Initially, bioinformatic prediction was used to predict the differentially expressed genes and related miRNAs in GC. miR-95 and DUSP5 expression was altered in GC cell line (MGC803) to evaluate their respective effects on the epithelial–mesenchymal transition (EMT) process, cellular processes (cell proliferation, migration, invasion, cell cycle, and apoptosis), cancer stem cell (CSC) phenotype, as well as tumor growth ability. It was further predicted in bioinformatic prediction and verified in GC tissue and cell line experiments that miR-95 was highly expressed in GC. miR-95 negatively regulated DUSP5, which resulted in the MAPK pathway activation. Inhibited miR-95 or overexpressed DUSP5 was observed to inhibit the levels of CSC markers (CD133, CD44, ALDH1, and Lgr5), highlighting the inhibitory role in the CSC phenotype. More important, evidence was obtained demonstrating that miR-95 knockdown or DUSP5 upregulation exerted an inhibitory effect on the EMT process, cellular processes, and tumor growth. Together these results, miR-95 knockdown inhibited GC development via DUSP5-dependent MAPK pathway.  相似文献   
63.
A Gram-staining-negative, rod-shaped and motile with several polar flagellums bacterium, designated WM-3T, was isolated from a rice paddy soil in South China. Growth occurred with 0–3.0 % (w/v) NaCl (optimum 2.0 %), at pH 5.5–9.0 (optimum pH 7.0) and at 25–42 °C (optimum 30–37 °C) in liquid Reasoner’s 2A medium. Analysis of the 16S rRNA gene and gyrB gene sequences revealed that strain WM-3T was most closely related to the type strains of the species Pseudomonas linyingensis and Pseudomonas sagittaria. Its sequence similarities with P. linyingensis CGMCC 1.10701T and P. sagittaria JCM 18195T were 97.4 and 97.3 %, respectively, for 16S rRNA gene, and were 94.1 and 94.2 %, respectively, for gyrB gene. DNA–DNA hybridization between strain WM-3T and these two type strains showed relatedness of 35.6 and 30.9 %, respectively. G+C content of genomic DNA was 69.4 mol%. The whole-cell fatty acids mainly consisted of C16:0 (30.0 %), C16:1 ω6c and/or C16:1 ω7c (19.3 %) and C18:1 ω6c and/or C18:1 ω7c (16.3 %). The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain WM-3T belongs to genus Pseudomonas but represents a novel species, for which the name Pseudomonas oryzae sp. nov. is proposed. The type strain is WM-3T (=KCTC 32247T =CGMCC 1.12417T).  相似文献   
64.
65.
Abstract

Archaeosomes composed of archaeal total polar lipids (TPL) or semi-synthetic analog vesicles have been used as vaccine adjuvants and delivery systems in animal models for many years. Typically administered by intramuscular or subcutaneous injections, archaeosomes can induce robust, long-lasting humoral and cell-mediated immune responses against entrapped antigens and provide protection in murine models of infectious disease and cancer. Herein, we evaluated various archaeosomes for transdermal delivery, since this route may help eliminate needle-stick injuries and needle re-use, and therefore increase patient compliance. Archaeosomes composed of TPL from different archaea (Halobacterium salinarum, Methanobrevibacter smithii, Haloferax volcanii) and various semi-synthetic glycolipid combinations were evaluated for their ability to diffuse across the skin barrier using an ex vivo pig skin model and the results were compared to conventional synthetic ester liposomes. Physicochemical characteristics were determined for selected formulations including vesicle size, size distribution, zeta potential, fluidity, antigen (ovalbumin) incorporation efficiency and release. Archaeosomes, in particular those composed of M. smithii TPL or the synthetic glycolipid sulfated S-lactosylarchaeol (SLA) mixed with uncharged glycolipid lactosyl archaeol (LA), appeared to be effective carriers for ovalbumin, achieving much better antigen distribution and vesicle accumulation in the skin epidermis than conventional liposomes. The enhanced skin permeation of archaeosomes may be attributed to their chemical structure and physicochemical properties such as particle size, surface charge, stability, and fluidity of their lipid bilayer.  相似文献   
66.
Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H+-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1–17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2. Moreover, this peptide strongly inhibits GEF activity via direct interaction with the Sec7 domain of cytohesin-2. The structure of a2N(1–17) and its amino acids Phe5, Met10, and Gln14 involved in interaction with Sec7 domain were determined by NMR spectroscopy analysis. In silico docking experiments revealed that part of the V-ATPase formed by its a2N(1–17) epitope competes with the switch 2 region of Arf1 and Arf6 for binding to the Sec7 domain of cytohesin-2. The amino acid sequence alignment and GEF activity studies also uncovered the conserved character of signaling between all four (a1–a4) a-subunit isoforms of mammalian V-ATPase and cytohesin-2. Moreover, the conserved character of this phenomenon was also confirmed in experiments showing binding of mammalian cytohesin-2 to the intact yeast V-ATPase holo-complex. Thus, here we have uncovered an evolutionarily conserved function of the V-ATPase as a novel cytohesin-signaling receptor.  相似文献   
67.
68.
This minireview mainly aims at the study of S-adenosyl-l-methionine (SAM) production by microbial fermentation. A brief introduction of the biological role and application of SAM was presented. In general, SAM production can be improved by breeding of the producing strain through the conventional mutation or genetic engineering approach in the molecular or cellular scale, by optimization of culture conditions in the cellular scale or bioreactor engineering scale, or by multiscale approach. The productivity of SAM fermentation has been improved greatly through the efforts of many researchers using the methods previously mentioned. The SAM-producing strains used extensively are Pichia pastoris and Saccharomyces cerevisiae. The effect of SAM on antibiotic production was also exemplified. The skill and scheme beneficial to the improvement of SAM production involves the enhancement of SAM synthetase (methionine adenosyltransferase) activity and selection of engineered constitutive promoters with appropriate strength; seeking for and eliminating the rate-limiting factors in SAM synthesis, namely, knocking off the genes that transform SAM and l-methionine (L-Met) to cysteine; release the feedback inhibition of SAM to methylenetetrahydrofolate reductase; blocking the transsulfuration pathway by interfering the responsible enzymes; enhancing ATP level through pulsed feeding of glycerol; and optimizing the L-Met feeding strategy. Precise control of gene expression and quantitative assessment of physiological parameters in engineered P. pastoris were highlighted. Finally, a discussion of the prospect of SAM production was presented.  相似文献   
69.
70.
Isoniazid (INH) and Rifampicin (RFP) are widely used in the world for the treatment of tuberculosis, but the hepatotoxicity is a major concern during clinical therapy. Previous studies showed that these drugs induced oxidative stress in liver, and several antioxidants abated this effect. Metallothionein (MT), a member of cysteine-rich protein, has been proposed as a potent antioxidant. This study attempts to determine whether endogenous expression of MT protects against INH and RFP-induced hepatic oxidative stress in mice. Wild type (MT+/+) and MT-null (MT−/−) mice were treated intragastrically with INH (150 mg/kg), RFP (300 mg/kg), or the combination (150 mg/kg INH +300 mg/kg RFP) for 21 days. The results showed that MT−/− mice were more sensitive than MT+/+ mice to INH and RFP-induced hepatic injuries as evidenced by hepatic histopathological alterations, increased serum AST levels and liver index, and hepatic oxidative stress as evidenced by the increase of MDA production and the change of liver antioxidant status. Furthermore, INH increased the protein expression of hepatic CYP2E1 and INH/RFP (alone or in combination) decreased the expression of hepatic CYP1A2. These findings clearly demonstrate that basal MT provides protection against INH and RFP-induced toxicity in hepatocytes. The CYP2E1 and CYP1A2 were involved in the pathogenesis of INH and RFP-induced hepatotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号