首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2115篇
  免费   175篇
  国内免费   192篇
  2024年   1篇
  2023年   26篇
  2022年   62篇
  2021年   106篇
  2020年   68篇
  2019年   110篇
  2018年   102篇
  2017年   72篇
  2016年   89篇
  2015年   140篇
  2014年   146篇
  2013年   134篇
  2012年   202篇
  2011年   166篇
  2010年   98篇
  2009年   81篇
  2008年   107篇
  2007年   86篇
  2006年   76篇
  2005年   72篇
  2004年   40篇
  2003年   48篇
  2002年   54篇
  2001年   35篇
  2000年   32篇
  1999年   48篇
  1998年   19篇
  1997年   31篇
  1996年   20篇
  1995年   29篇
  1994年   30篇
  1993年   16篇
  1992年   35篇
  1991年   22篇
  1990年   19篇
  1989年   14篇
  1988年   11篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   11篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
排序方式: 共有2482条查询结果,搜索用时 15 毫秒
221.
222.
A recombinant human consensus interferon-α mutant (cIFN) was expressed in Pichia pastoris. The maximum dry cell weight, cIFN concentration and antiviral activity were 160 g l−1, 1.24 g l−1 and 4.1 × 107 IU ml−1, respec tively. The cIFN secreted into the medium was in the form of aggregates dominantly by non-covalent interaction and partially by disulphide bond. When the fermentation supernatant was disaggregated with 6 M guanidine hydrochloride, the antiviral activity of cIFN achieved 2.2 × 108 IU ml−1.  相似文献   
223.
Heme a is a redox cofactor unique to cytochrome c oxidases and vital to aerobic respiration. Heme a differs from the more common heme b by two chemical modifications, the C-8 formyl group and the C-2 hydroxyethylfarnesyl group. The effects of these porphyrin substituents on ferric and ferrous heme binding and electrochemistry were evaluated in a designed heme protein maquette. The maquette scaffold chosen, [Delta7-H3m](2), is a four-alpha-helix bundle that contains two bis(3-methyl-l-histidine) heme binding sites with known absolute ferric and ferrous heme b affinities. Hemes b, o, o+16, and heme a, those involved in the biosynthesis of heme a, were incorporated into the bis(3-methyl-l-histidine) heme binding sites in [Delta7-H3m](2). Spectroscopic analyses indicate that 2 equiv of each heme binds to [Delta7-H3m](2), as designed. Equilibrium binding studies of the hemes with the maquette demonstrate the tight affinity for hemes containing the C-2 hydroxyethylfarnesyl group in both the ferric and ferrous forms. Coupled with the measured equilibrium midpoint potentials, the data indicate that the hydroxyethylfarnesyl group stabilizes the binding of both ferrous and ferric heme by at least 6.3 kcal/mol via hydrophobic interactions. The data also demonstrate that the incorporation of the C-8 formyl substituent in heme a results in a 179 mV, or 4.1 kcal/mol, positive shift in the heme reduction potential relative to heme o due to the destabilization of ferric heme binding relative to ferrous heme binding. The two substituents appear to counterbalance each other to provide for tighter heme a affinity relative to heme b in both the ferrous and ferric forms by at least 6.3 and 2.1 kcal/mol, respectively. These results also provide a rationale for the reaction sequence observed in the biosynthesis of heme a.  相似文献   
224.
During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.  相似文献   
225.
226.
IL-22-producing CD4+ T cells (IL-22+CD4+ T cells) and Th22 cells (IL-22+IL-17?IFN-γ?CD4+ T cells) represent newly discovered T-cell subsets, but their nature, regulation, and clinical relevance in gastric cancer (GC) are presently unknown. In our study, the frequency of IL-22+CD4+ T cells in tumor tissues from 76 GC patients was significantly higher than that in tumor-draining lymph nodes, non-tumor, and peritumoral tissues. Most intratumoral IL-22+CD4+ T cells co-expressed IL-17 and IFN-γ and showed a memory phenotype. Locally enriched IL-22+CD4+ T cells positively correlated with increased CD14+ monocytes and IL-6 and IL-23 detection ex vivo, and in vitro IL-6 and IL-23 induced the polarization of IL-22+CD4+ T cells in a dose-dependent manner and the polarized IL-22+CD4+ T cells co-expressed of IL-17 and IFN-γ. Moreover, IL-22+CD4+ T-cell subsets (IL-22+IL-17+CD4+, IL-22+IL-17?CD4+, IL-22+IFN-γ+CD4+, IL-22+IFN-γ?CD4+, and IL-22+IL-17+IFN-γ+CD4+ T cells), and Th22 cells were also increased in tumors. Furthermore, higher intratumoral IL-22+CD4+ T-cell percentage and Th22-cell percentage were found in patients with tumor-node-metastasis stage advanced and predicted reduced overall survival. In conclusion, our data indicate that IL-22+CD4+ T cells and Th22 cells are likely important in establishing the tumor microenvironment for GC; increased intratumoral IL-22+CD4+ T cells and Th22 cells are associated with tumor progression and predict poorer patient survival, suggesting that tumor-infiltrating IL-22+CD4+ T cells and Th22 cells may be suitable therapeutic targets in patients with GC.  相似文献   
227.
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.

Structured summary of protein interactions

dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4)  相似文献   
228.
Genetic polymorphisms of IFN regulatory factor 5 (IRF5) are associated with an increased risk of lupus in humans. In this study, we examined the role of IRF5 in the pathogenesis of pristane-induced lupus in mice. The pathological response to pristane in IRF5(-/-) mice shared many features with type I IFN receptor (IFNAR)(-/-) and TLR7(-/-) mice: production of anti-Sm/RNP autoantibodies, glomerulonephritis, generation of Ly6C(hi) monocytes, and IFN-I production all were greatly attenuated. Lymphocyte activation following pristane injection was greatly diminished in IRF5(-/-) mice, and Th cell differentiation was deviated from Th1 in wild-type mice toward Th2 in IRF5(-/-) mice. Th cell development was skewed similarly in TLR7(-/-) or IFNAR(-/-) mice, suggesting that IRF5 alters T cell activation and differentiation by affecting cytokine production. Indeed, production of IFN-I, IL-12, and IL-23 in response to pristane was markedly decreased, whereas IL-4 increased. Unexpectedly, plasmacytoid dendritic cells (pDC) were not recruited to the site of inflammation in IRF5(-/-) or MyD88(-/-) mice, but were recruited normally in IFNAR(-/-) and TLR7(-/-) mice. In striking contrast to wild-type mice, pristane did not stimulate local expression of CCL19 and CCL21 in IRF5(-/-) mice, suggesting that IRF5 regulates chemokine-mediated pDC migration independently of its effects on IFN-I. Collectively, these data indicate that altered production of IFN-I and other cytokines in IRF5(-/-) mice prevents pristane from inducing lupus pathology by broadly affecting T and B lymphocyte activation/differentiation. Additionally, we uncovered a new, IFN-I-independent role of IRF5 in regulating chemokines involved in the homing of pDCs and certain lymphocyte subsets.  相似文献   
229.
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25?μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1?μM) and sulpiride (1 and 40?μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10?μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25?μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.  相似文献   
230.
Little is known about the genetic and biochemical mechanisms that underlie red algal development, for example, why the group failed to evolve complex parenchyma and tissue differentiation. Here we examined expressed sequence tag (EST) data from two closely related species, Porphyra umbilicalis (L.) J. Agardh and P. purpurea (Roth) C. Agardh, for conserved developmental regulators known from model eukaryotes, and their expression levels in several developmental stages. Genes for most major developmental families were present, including MADS‐box and homeodomain (HD) proteins, SNF2 chromatin‐remodelers, and proteins involved in sRNA biogenesis. Some of these genes displayed altered expression correlating with different life history stages or cell types. Notably, two ESTs encoding HD proteins showed eightfold higher expression in the P. purpurea sporophyte (conchocelis) than in the gametophyte (blade), whereas two MADS domain‐containing paralogs showed significantly different patterns of expression in the conchocelis and blade respectively. These developmental gene families do not appear to have undergone the kinds of dramatic expansions in copy number found in multicellular land plants and animals, which are important for regulating developmental processes in those groups. Analyses of small RNAs did not validate the presence of miRNAs, but homologs of Argonaute were present. In general, it appears that red algae began with a similar molecular toolkit for directing development as did other multicellular eukaryotes, but probably evolved altered roles for many key proteins, as well as novel mechanisms yet to be discovered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号