全文获取类型
收费全文 | 24415篇 |
免费 | 1957篇 |
国内免费 | 1827篇 |
专业分类
28199篇 |
出版年
2024年 | 55篇 |
2023年 | 301篇 |
2022年 | 796篇 |
2021年 | 1285篇 |
2020年 | 887篇 |
2019年 | 1040篇 |
2018年 | 1031篇 |
2017年 | 748篇 |
2016年 | 1069篇 |
2015年 | 1467篇 |
2014年 | 1723篇 |
2013年 | 1891篇 |
2012年 | 2248篇 |
2011年 | 1925篇 |
2010年 | 1168篇 |
2009年 | 1020篇 |
2008年 | 1201篇 |
2007年 | 1063篇 |
2006年 | 921篇 |
2005年 | 809篇 |
2004年 | 693篇 |
2003年 | 628篇 |
2002年 | 544篇 |
2001年 | 481篇 |
2000年 | 419篇 |
1999年 | 403篇 |
1998年 | 254篇 |
1997年 | 269篇 |
1996年 | 256篇 |
1995年 | 242篇 |
1994年 | 220篇 |
1993年 | 137篇 |
1992年 | 206篇 |
1991年 | 145篇 |
1990年 | 130篇 |
1989年 | 109篇 |
1988年 | 73篇 |
1987年 | 94篇 |
1986年 | 56篇 |
1985年 | 56篇 |
1984年 | 43篇 |
1983年 | 30篇 |
1982年 | 30篇 |
1981年 | 19篇 |
1980年 | 8篇 |
1979年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Xiuxiang Liu Jinjin Wu Chenying Zhu Jie Liu Xiaoli Chen Tao Zhuang Yashu Kuang Yanfang Wang Hao Hu Ping Yu Huimin Fan Yuzhen Zhang Zhongmin Liu Lin Zhang 《Journal of cellular and molecular medicine》2020,24(2):2013-2026
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development. 相似文献
62.
Wei Zhou Jianyi Zhu Songdong Shen Shan Lu Jinfeng Wang Jianrong Xu Pu Xu 《Journal of applied phycology》2008,20(5):991-999
Nuclear divisions of carpospores, conchocelis and conchospores of Porphyra yezoensis, P. haitanensis, P. katadai var. hemiphylla and P. oligospermatangia from China were investigated. The observations showed diploid chromosome numbers of 2n = 6 for P. yezoensis and P. oligospermatangia, and 2n = 10 for P. haitanensis and P. katadai var. hemiphylla. For all four species, somatic pairing of chromosome sets was observed in late prophase. Sister chromosomes separated at
anaphase as mitosis took place in carpospores, conchocelis filamentous cells, conchosporangial branch cells and sporangial
cells (conchospore formation). Chromosome configurations of tetrad and ring-shaped in conchospore germination were observed,
demonstrating the occurrence of meiosis. The characteristics of diploid nuclear division in 2n = 6 species are the same as
those of 2n = 10 species. The influence of somatic pairing on nuclear division of diploid cells in Porphyra was discussed. 相似文献
63.
Jian Ye Rui Zhu Xiaosheng He Yingying Feng Liangle Yang Xiaoyan Zhu Qifei Deng Tangchun Wu Xiaomin Zhang 《PloS one》2014,9(4)
Background
Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with reduced heart rate variability (HRV), a strong predictor of cardiovascular diseases, but the mechanism is not well understood.Objectives
We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function.Methods
HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6) and heat shock protein 70 (Hsp70) were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs) were measured by gas chromatography-mass spectrometry.Results
We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all P trend<0.05); and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP) and low frequency (LF) (P trend = 0.014 and 0.006, respectively). In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all P trend<0.05), but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN), TP and LF in the low-PAHs metabolites groups (all P trend<0.05). We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV.Conclusions
In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups. 相似文献65.
A hybrid model for erythrocyte membrane: a single unit of protein network coupled with lipid bilayer 下载免费PDF全文
To investigate the nanomechanics of the erythrocyte membrane we developed a hybrid model that couples the actin-spectrin network to the lipid bilayer. This model features a Fourier space Brownian dynamics model of the bilayer, a Brownian dynamics model of the actin protofilament, and a modified wormlike-chain model of the spectrin (including a cable-dynamics model to predict the oscillation in tension). This model enables us to predict the nanomechanics of single or multiple units of the protein network, the lipid bilayer, and the effect of their interactions. The present work is focused on the attitude of the actin protofilament at the equilibrium states coupled with the elevations of the lipid bilayer through their primary linkage at the suspension complex in deformations. Two different actin-spectrin junctions are considered at the junctional complex. With a point-attachment junction, large pitch angles and bifurcation of yaw angles are predicted. Thermal fluctuations at bifurcation may lead to mode-switching, which may affect the network and the physiological performance of the membrane. In contrast, with a wrap-around junction, pitch angles remain small, and the occurrence of bifurcation is greatly reduced. These simulations suggest the importance of three-dimensional molecular junctions and the lipid bilayer/protein network coupling on cell membrane mechanics. 相似文献
66.
During the submerged fermentation of medicinal mushroom Chinese truffle Tuber sinense, there was no significant effect of metal ion on the cell growth and the production of intracellular polysaccharides, while metal ion and its concentration significantly affected the production of extracellular polysaccharides (EPS). By using the approach of "one-variable-at-a-time", 50 mM Mg2+ was identified to be the most favorable for EPS production, and the next was 10 mM K+. A mathematical model, constructed by response surface methodology combination with full factorial design, was applied to study the synergic effect of Mg2+ and K+. EPS production reached its peak value of 5.86 g/L under their optimal combination of 30 mM Mg2+ and 5 mM K+ predicted by the model, which was higher by 130.7% compared with the basal fermentation medium without metal ion. The validation experiment showed the experimental values agreed with the predicted values well. EPS production obtained in this work was the highest reported in the culture of T. sinense. 相似文献
67.
Wei Guo Wenfeng Liu Lingjian Zhu Yongqiang Zhang Pengfei Cheng Guoqiang Dong Chunlin Zhuang Jianzhong Yao Chunquan Sheng Zhenyuan Miao Wannian Zhang 《化学与生物多样性》2011,8(8):1539-1549
Homocamptothecin (hCPT) is an E‐ring modified camptothecin (CPT) analogue, which showed pronounced inhibitory activity of topoisomerase I. In search of novel hCPT‐type anticancer agents, two series of hCPT derivatives were synthesized and evaluated in vitro against three human tumor cell lines. The results indicated that the 10‐substituted hCPT derivatives had a considerably higher cytotoxic activity than the 12‐substituted ones. Among the 10‐substituted compounds, 8a, 8b, 9b , and 9i showed an equivalent or even more potent activity than the positive control drug topotecan against the lung cancer cell line A‐549. Moreover, the hCPT analogues 8a and 8b exhibited a higher topoisomerase I inhibitory activity than CPT at a concentration of 100 μM . 相似文献
68.
Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification. 相似文献
69.
Abstract: One-trial conditioning of the nudibranch mollusk Hermissenda produces short- and long-term changes in excitability (enhancement) of identified sensory neurons. To investigate the biochemical mechanisms underlying this example of plasticity, we have examined changes in protein phosphorylation at different times following the in vitro conditioning trial. Changes in the incorporation of 32 PO4 into proteins were determined using two-dimensional polyacrylamide gel electrophoresis, autoradiography, and densitometry. Conditioning resulted in increases in levels of several phosphoproteins, five of which, ranging in apparent molecular mass from 22 to 55 kDa, were chosen for analysis. The increased phosphorylation of the 46- and 55-kDa phosphoproteins detected 2 h postconditioning was significantly greater than the level of phosphorylation detected in an unpaired control group, indicating that long-term enhancement is pairing specific. Statistically significant increases in phosphorylation as compared with the control group that received only light were detected immediately after conditioning (5 min) for the 55-, 46-, and 22-kDa phosphoproteins, at 1 h for the 55- and 46-kDa phosphoproteins, and at 2 h for the 55-, 46-, and 22-kDa phosphoproteins. The 46- and 55-kDa phosphoproteins are putative structural proteins, and the 22-kDa phosphoprotein is proposed to be a protein kinase C substrate previously identified in Hermissenda following multitrial classical conditioning. Time-dependent increases in protein phosphorylation may contribute to the induction and maintenance of different memory stages expressed in sensory neurons after one-trial conditioning. 相似文献