首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24425篇
  免费   1950篇
  国内免费   1822篇
  28197篇
  2024年   55篇
  2023年   301篇
  2022年   796篇
  2021年   1285篇
  2020年   886篇
  2019年   1040篇
  2018年   1032篇
  2017年   748篇
  2016年   1069篇
  2015年   1468篇
  2014年   1723篇
  2013年   1890篇
  2012年   2247篇
  2011年   1925篇
  2010年   1169篇
  2009年   1018篇
  2008年   1201篇
  2007年   1063篇
  2006年   921篇
  2005年   809篇
  2004年   693篇
  2003年   629篇
  2002年   544篇
  2001年   481篇
  2000年   417篇
  1999年   404篇
  1998年   255篇
  1997年   269篇
  1996年   256篇
  1995年   242篇
  1994年   220篇
  1993年   136篇
  1992年   206篇
  1991年   145篇
  1990年   130篇
  1989年   109篇
  1988年   73篇
  1987年   94篇
  1986年   56篇
  1985年   56篇
  1984年   43篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   8篇
  1979年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
Metformin, a widely prescribed first‐line drug for the treatment of type II diabetes mellitus, has been shown to extend lifespan and delay the onset of age‐related diseases. The precisely mechanisms by which these effects are realized remain elusive. We find that metformin exposure is restricted to adults, which is sufficient to extend lifespan. However, limiting metformin exposure to the larvae has no significant effect on Caenorhabditis elegans longevity. Here, we show that after metformin treatment, the level of S‐adenosylmethionine (SAM) is reduced in adults but not in the larvae. Potential mechanisms by which reduced SAM might increase lifespan include altering the histone methylation. However, the molecular connections between metformin, SAM limitation, methyltransferases, and healthspan‐associated phenotypes are unclear. Through genetic screening of C. elegans, we find that metformin promotes the healthspan through an H3K4 methyltransferase/demethylase complex to downregulate the targets, including mTOR and S6 kinase. Thus, our studies provide molecular links between meformin, SAM limitation, histone methylation, and healthspan and elucidate the mode action of metformin‐regulated healthspan extension will boost its therapeutic application in the treatment of human aging and age‐related diseases.  相似文献   
993.
Eicosanoids are crucial downstream signals in the insect immune responses. Phospholipase A2 (PLA2) catalyzes phospholipids, the initial step in eicosanoid biosynthesis. In mammals, the biological roles of Ca2+-independent Phospholipase A2 (iPLA2) have been extensively studied; however, only a few studies have attempted to explore iPLA2 functions in insects. In this study, we identified two iPLA2 genes (designated as BmiPLA2A and BmiPLA2B) in the silkworm, Bombyx mori. BmiPLA2A had a 2427 base pair (bp) open reading frame (ORF) that coded for a protein with 808 amino acids. In contrast, BmiPLA2B had a 1731 bp ORF that coded for a protein with 576 amino acids. Domain analysis revealed that BmiPLA2A had six ankyrin repeat domains, but BmiPLA2B lacks these domains. BmiPLA2A and BmiPLA2B were transcribed widely in various tissues and developmental stages with different expression patterns. The administration of 20-hydroxyecdysone increased their expression levels in the epidermis and hemocytes. Furthermore, challenged with virus, fungus, Gram-negative bacteria, and Gram-positive bacteria induced the expression of BmiPLA2A and BmiPLA2B with variable degrees along with different time points. Our findings imply that BmiPLA2A and BmiPLA2B may have important biological roles in the development and innate immunity of B. mori.  相似文献   
994.
Diabetic foot ulcer (DFU) is a kind of common and disabling complication of Diabetes Mellitus (DM). Emerging studies have demonstrated that tendon fibroblasts play a crucial role in remodeling phase of wound healing. However, little is known about the mechanism underlying high glucose (HG)-induced decrease in tendon fibroblasts viability. In the present study, the rat models of DFU were established, and collagen deposition, autophagy activation and cell apoptosis in tendon tissues were assessed using Hematoxylin–Eosin (HE) staining, immunohistochemistry (IHC), and TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, respectively. Tendon fibroblasts were isolated from Achilles tendon of the both limbs, and the effect of HG on autophagy activation in tendon fibroblasts was assessed using Western blot analysis, Cell Counting Kit-8 (CCK-8) assay, and flow cytometry. We found that cell apoptosis was increased significantly and autophagy activation was decreased in foot tendon tissues of DFU rats compared with normal tissues. The role of HG in regulating tendon fibroblasts viability was then investigated in vitro, and data showed that HG repressed cell viability and increased cell apoptosis. Furthermore, HG treatment reduced LC3-II expression and increased p62 expression, indicating that HG repressed autophagy activation of tendon fibroblasts. The autophagy activator rapamycin reversed the effect. More importantly, rapamycin alleviated the suppressive role of HG in tendon fibroblasts viability. Taken together, our data demonstrate that HG represses tendon fibroblasts proliferation by inhibiting autophagy activation in tendon injury.  相似文献   
995.
Background: Endometriosis (EMS), a typical endocrine immune disorder, associates with dramatically increased estrogen production and disorganized immune response in ectopic focus. Peritoneal regulatory T cells (Tregs) expansion in women with EMS and their pathogenic role attributable to endometriotic immunotolerance has been reported. Whether local high estrogen promotes EMS by discipling Tregs needs to be further explored. Up to date, there is no effective medicine for the treatment of EMS. SCM-198 is a synthetic leonurine with multiple physiological activities. Whether SCM-198 could regulate Tregs via estrogen and facilitate the radical cure of EMS has not yet been reported.Methods: Proportion of Tregs in peritoneal fluid of patients with EMS was firstly analyzed via flow cytometry. Peritoneal estrogen concentration and the mRNA levels of estrogen receptor α (ERα) and estrogen receptor β (ERβ) of Tregs were detected by ELISA and RT-PCR, respectively. Grouped in vitro induction assays were performed to explore the effects of SCM-198 and estrogen signaling on Tregs. Cell invasion and viability assays were utilized to detect the crosstalk between Tregs and ectopic endometrial stromal cells (eESCs), with or without SCM-198 treatment. Furthermore, EMS mice models were established to verify the therapeutic effects of SCM-198.Results: Increased Tregs were found in peritoneal fluid of EMS patients, accompanied with estrogen-ERα overactivation. Estrogen-ERα triggered the expansion of Tregs and their cytokine production (IL-10 and TGF-β1), which could be reversed by SCM-198 treatment. Moreover, SCM-198 abated the invasion and viability of eESCs enhanced by Tregs. In vivo experiments confirmed that SCM-198 obviously retarded the growth of ectopic lesions and downregulated the functions of Tregs via estrogen-ERα inactivation.Conclusions: These data suggest that SCM-198 attenuates Tregs expansion via the inhibition of estrogen-ERα signaling in EMS and offer a promising therapy for such a refractory disease.  相似文献   
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号