首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24464篇
  免费   1950篇
  国内免费   1785篇
  2024年   55篇
  2023年   301篇
  2022年   794篇
  2021年   1285篇
  2020年   886篇
  2019年   1040篇
  2018年   1031篇
  2017年   748篇
  2016年   1069篇
  2015年   1467篇
  2014年   1726篇
  2013年   1891篇
  2012年   2248篇
  2011年   1925篇
  2010年   1169篇
  2009年   1019篇
  2008年   1201篇
  2007年   1064篇
  2006年   921篇
  2005年   810篇
  2004年   693篇
  2003年   628篇
  2002年   544篇
  2001年   481篇
  2000年   417篇
  1999年   403篇
  1998年   255篇
  1997年   269篇
  1996年   256篇
  1995年   242篇
  1994年   220篇
  1993年   136篇
  1992年   206篇
  1991年   145篇
  1990年   130篇
  1989年   109篇
  1988年   73篇
  1987年   94篇
  1986年   56篇
  1985年   56篇
  1984年   43篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   8篇
  1979年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
m6A modification is the most prevalent RNA modification in eukaryotes. As the critical N6-methyladenosine (m6A) methyltransferase, the roles of methyltransferase like 3 (METTL3) in colorectal cancer (CRC) are controversial. Here, we confirmed that METTL3, a critical m6A methyltransferase, could facilitate CRC progression in vitro and in vivo. Further, we found METTL3 promoted CRC cell proliferation by methylating the m6A site in 3′-untranslated region (UTR) of CCNE1 mRNA to stabilize it. Moreover, we found butyrate, a classical intestinal microbial metabolite, could down-regulate the expression of METTL3 and related cyclin E1 to inhibit CRC development. METTL3 promotes CRC proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner, representing a promising therapeutic strategy for the treatment of CRC.  相似文献   
932.
Neuroblastoma ranks as the most commonly seen and deadly solid tumour in infancy. The aberrant activity of m6A‐RNA methyltransferase METTL3 is involved in human cancers. Therefore, functional genetic variants in the METTL3 gene may contribute to neuroblastoma risk. In the current nine‐centre case‐control study, we aimed to analyse the association between the METTL3 gene single nucleotide polymorphisms (SNPs) and neuroblastoma susceptibility. We genotyped four METTL3 gene SNPs (rs1061026 T>G, rs1061027 C>A, rs1139130 A>G, and rs1263801 G>C) in 968 neuroblastoma patients and 1814 controls in China. We found significant associations between these SNPs and neuroblastoma risk in neither single‐locus nor combined analyses. Interestingly, in the stratified analysis, we observed a significant risk association with rs1061027 AA in subgroups of children ≤ 18 months of age (adjusted OR = 1.87, 95% CI = 1.03‐3.41, P = .040) and females (adjusted OR = 1.86, 95% CI = 1.07‐3.24, P = .028). Overall, we identified a significant association between METTL3 gene rs1061027 C>A polymorphism and neuroblastoma risk in children ≤18 months of age and females. Our findings provide novel insights into the genetic determinants of neuroblastoma.  相似文献   
933.
Diabetes mellitus (DM) damages male reproduction at multiple levels, such as endocrine secretion, spermatogenesis and penile erection. We herein investigated the protective effects and mechanism of loganin targeting the advanced glycation end products (AGEs)/receptor for AGEs (RAGE)/p38 mitogen-activated protein kinase (p38MAPK)/NF-κB signalling pathway. Loganin relieved the general DM symptoms and decreased the blood glucose level of KK-Ay DM mice. Haematoxylin-eosin staining demonstrated that loganin ameliorated testicular histology and function and enhanced the activities of testis-specific markers lactate dehydrogenase (LDH), acid phosphatase (ACP) and gamma-glutamyl transferase (γ-GT). Loganin also showed evident anti-oxidative stress, anti-apoptotic and anti-inflammatory effects on DM-induced reproductive damage by restoring glutathione (GSH) level and superoxide dismutase (SOD) activity, as well as reducing reactive oxygen species (ROS) level and Bax/Bcl-2 ratio in vivo and in vitro. Western blotting exhibited that loganin significantly inhibited the AGEs/RAGE/p38MAPK/NF-κB signalling pathway. Acridine orange and ethidium bromide staining (AOEB) and Western blotting showed that loganin in combination with inhibitors of RAGE, p38MAPK and NF-κB exerted stronger anti-apoptotic effects on AGE-induced GC-2 cell damage compared with loganin alone. In conclusion, loganin can protect against DM-induced reproductive damage, probably by suppressing the AGEs/RAGE/p38MAPK/NF-κB pathway.  相似文献   
934.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   
935.
936.
937.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   
938.
The application of lithium (Li) metal anodes in rechargeable batteries is primarily restricted by Li dendrite growth on the metal's surface, which leads to shortened cycle life and safety concerns. Herein, well‐spaced nanotubes with ultrauniform surface curvature are introduced as a Li metal anode structure. The ultrauniform nanotubular surface generates uniform local electric fields that evenly attract Li‐ions to the surface, thereby inducing even current density distribution. Moreover, the well‐defined nanotube spacing offers Li diffusion pathways to the electroactive areas as well as the confined spaces to host deposited Li. These structural attributes create a unique electrodeposition manner; i.e., Li metal homogenously deposits on the nanotubular wall, causing each Li nanotube to grow in circumference without obvious sign of dendritic formation. Thus, the full‐cell battery with the spaced Li nanotubes exhibits a high specific capacity of 132 mA h g?1 at 1 C and an excellent coulombic efficiency of ≈99.85% over 400 cycles.  相似文献   
939.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
940.
Carbon‐based heteroatom‐coordinated single‐atom catalysts (SACs) are promising candidates for energy‐related electrocatalysts because of their low‐cost, tunable catalytic activity/selectivity, and relatively homogeneous morphologies. Unique interactions between single metal sites and their surrounding coordination environments play a significant role in modulating the electronic structure of the metal centers, leading to unusual scaling relationships, new reaction mechanisms, and improved catalytic performance. This review summarizes recent advancements in engineering of the local coordination environment of SACs for improved electrocatalytic performance for several crucial energy‐convention electrochemical reactions: oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, CO2 reduction reaction, and nitrogen reduction reaction. Various engineering strategies including heteroatom‐doping, changing the location of SACs on their support, introducing external ligands, and constructing dual metal sites are comprehensively discussed. The controllable synthetic methods and the activity enhancement mechanism of state‐of‐the‐art SACs are also highlighted. Recent achievements in the electronic modification of SACs will provide an understanding of the structure–activity relationship for the rational design of advanced electrocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号