首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30339篇
  免费   2385篇
  国内免费   2074篇
  34798篇
  2024年   67篇
  2023年   440篇
  2022年   1017篇
  2021年   1703篇
  2020年   1038篇
  2019年   1341篇
  2018年   1279篇
  2017年   930篇
  2016年   1271篇
  2015年   1855篇
  2014年   2208篇
  2013年   2474篇
  2012年   2766篇
  2011年   2458篇
  2010年   1480篇
  2009年   1276篇
  2008年   1504篇
  2007年   1312篇
  2006年   1152篇
  2005年   941篇
  2004年   791篇
  2003年   664篇
  2002年   594篇
  2001年   536篇
  2000年   470篇
  1999年   483篇
  1998年   269篇
  1997年   290篇
  1996年   292篇
  1995年   282篇
  1994年   253篇
  1993年   179篇
  1992年   276篇
  1991年   185篇
  1990年   151篇
  1989年   151篇
  1988年   92篇
  1987年   85篇
  1986年   60篇
  1985年   68篇
  1984年   29篇
  1983年   32篇
  1982年   18篇
  1981年   15篇
  1980年   12篇
  1979年   9篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate‐free) and camphor‐soaked forms have open conformations. Furthermore, two other potential camphor‐binding sites were also identified from electron densities in the camphor‐soaked structure, one being located in the access channel and the other in a cavity on the surface near the F‐helix side of the F‐G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor‐bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor‐bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit.  相似文献   
992.
We tested if small conductance, Ca2 +‐sensitive K+ channels (SKCa) precondition hearts against ischemia reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O2‐derived free radicals are required to initiate protection via SKCa channels, and, importantly, if SKCa channels are present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O2?), and m[Ca2 +] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SKCa and IKCa channel opener DCEBIO (DCEB) was given for 10 min and ended 20 min before IR. Either TBAP, a dismutator of O2?, NS8593, an antagonist of SKCa isoforms, or other KCa and KATP channel antagonists, were given before DCEB and before ischemia. DCEB treatment resulted in a 2-fold increase in LV pressure on reperfusion and a 2.5 fold decrease in infarct size vs. non-treated hearts associated with reduced O2? and m[Ca2 +], and more normalized NADH and FAD during IR. Only NS8593 and TBAP antagonized protection by DCEB. Localization of SKCa channels to mitochondria and IMM was evidenced by a) identification of purified mSKCa protein by Western blotting, immuno-histochemical staining, confocal microscopy, and immuno-gold electron microscopy, b) 2-D gel electrophoresis and mass spectroscopy of IMM protein, c) [Ca2 +]‐dependence of mSKCa channels in planar lipid bilayers, and d) matrix K+ influx induced by DCEB and blocked by SKCa antagonist UCL1684. This study shows that 1) SKCa channels are located and functional in IMM, 2) mSKCa channel opening by DCEB leads to protection that is O2? dependent, and 3) protection by DCEB is evident beginning during ischemia.  相似文献   
993.
Novel triphenylethylene–coumarin hybrid derivatives containing different amounts of amino side chains were designed and synthesized in good yields under microwave radiation. The derivatives 5bd which possessed two amino side chains (except morpholinyl) showed a broad-spectrum and good anti-proliferative activity against five tumor cells and low cytotoxicity in osteoblast. UV–vis, fluorescence, and circular dichroism (CD) spectroscopies and thermal denaturation exhibited that compounds 10c, 5c, and 13c bearing amino side chain (except morpholinyl) on 4-phenyl had significant interactions with Ct-DNA by the intercalative mode of binding. Structure–activity relationships (SARs) analysis suggested that the amino alkyl chain would play an important role both in the compounds against tumor cells proliferation and their interactions with DNA.  相似文献   
994.
995.
Detailed molecular analyses of Clonal Complex 59 (CC59) methicillin-resistant Staphylococcus aureus (MRSA) isolates from children in seven major cities across Mainland China were examined. A total of 110 CC59 isolates from invasive and non-invasive diseases were analyzed by multilocus sequence typing (MLST), Staphylococcus cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) typing and pulsed-field gel electrophoresis (PFGE). Antibiotics susceptibilities, carriage of plasmids and 42 virulence genes and the expression of virulence factors were examined. ST59 (101/110, 91.8%) was the predominant sequence type (ST), while single locus variants (SLVs) belonging to ST338 (8/110, 7.3%) and ST375 (1/110, 0.9%) were obtained. Three SCCmec types were found, namely type III (2.7%), type IV (74.5%) and type V (22.7%). Seven spa types including t437, which accounted for 87.3%, were determined. Thirteen PFGE types were obtained. PFGE types A and B were the major types totally accounting for 81.8%. The dominant clone was ST59-t437-IVa (65.5%), followed by ST59-t437-V (14.5%). The positive rate of luks-PV and lukF-PV PVL encoding (pvl) gene was 55.5%. Plasmids were detected in 83.6% (92/110) of the strains. The plasmid size ranging from 23.4 kb to 50 kb was most prevalent which accounted for 83.7% (77/92). A significantly lower expression of hla was found in ST59-t437-IVa compared with ST59-t437-V. Among the 110 cases, 61.8% of the patients were less than 1 year old. A total of 90 cases (81.8%) were community-associated (CA) infections whereas 20 cases (18.2%) were hospital-associated (HA) infections. Out of the 110 patients, 36.4% (40/110) were diagnosed with invasive infectious diseases in which ST59-t437-IVa accounted for 67.5% (27/40). In brief, ST59-t437-IVa was proved as the dominant clone in CC59 MRSA strains. The carriage rate of pvl gene was high. CC59 MRSA could result in CA and HA infections. The majortiy of MRSA infection children were in young age.  相似文献   
996.
We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin''s cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable P-gp substrates such as amprenavir, quinidine, ketoconazole and verapamil do not, regardless of whether they actually use the basolateral transporter.  相似文献   
997.
Certain saponins are bioactive compounds with anticancer, antivirus and antioxidant activities. This paper discussed inhibitory effects of saponins from Xanthoceras Sorbifolia on tyrosinase, through the research of the rate of tyrosinase catalyzed L-DOPA oxidation. The inhibition rate of tyrosinase activity presented non-linear changes with the saponins concentration. The rate reached 52.0% when the saponins concentration was 0.96 mg/ml. Antioxidant activities of saponins from Xanthoceras Sorbifolia were evaluated by using hydroxyl and superoxide radical scavenging assays. The hydroxyl radical scavenging effects of the saponins were 15.5–68.7%, respectively at the concentration of 0.18–2.52 mg/ml. The superoxide radical scavenging activity reduced from 96.6% to 7.05% with the time increasing at the concentration of 1.44 mg/ml. All the above antioxidant evaluation indicated that saponins from Xanthoceras Sorbifolia exhibited good antioxidant activity in a concentration- dependent manner.  相似文献   
998.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   
999.
Synthesis of acetylcholine (ACh) by non‐neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+‐dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non‐neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non‐neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter‐like proteins, a five gene family choline‐transporter like protein (CTL)1–5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+‐independent and CTL1–5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non‐neuronal cell lines and presents a mechanism to target non‐neuronal ACh synthesis without affecting neuronal ACh synthesis.  相似文献   
1000.
The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3–6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3–5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4–5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society’s special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5–6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号