首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31880篇
  免费   2496篇
  国内免费   2223篇
  36599篇
  2024年   73篇
  2023年   446篇
  2022年   1060篇
  2021年   1762篇
  2020年   1091篇
  2019年   1390篇
  2018年   1329篇
  2017年   968篇
  2016年   1335篇
  2015年   1957篇
  2014年   2318篇
  2013年   2624篇
  2012年   2890篇
  2011年   2592篇
  2010年   1563篇
  2009年   1350篇
  2008年   1598篇
  2007年   1418篇
  2006年   1240篇
  2005年   1022篇
  2004年   848篇
  2003年   708篇
  2002年   635篇
  2001年   542篇
  2000年   482篇
  1999年   498篇
  1998年   285篇
  1997年   310篇
  1996年   314篇
  1995年   297篇
  1994年   261篇
  1993年   191篇
  1992年   280篇
  1991年   187篇
  1990年   154篇
  1989年   153篇
  1988年   93篇
  1987年   86篇
  1986年   60篇
  1985年   72篇
  1984年   29篇
  1983年   33篇
  1982年   18篇
  1981年   16篇
  1980年   12篇
  1979年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Cephalosporin C was produced by a highly productive strain of Cephalosporium acremonium under industrial production conditions by fed-batch cultivation in a 40-l stirred-tank reactor using a complex medium containing 50 g l-1 peanut flour. The influence of dissolved oxygen concentration (pO2, DOC), which was maintained at different constant levels between 5 and 40% of its saturation value, during the production phase by means of a parameter-adaptive pO2-controller, on the cephalosporin C biosynthesis, was investigated. The concentrations of cephalosporin C (CPC) and its precursors penicillin N (PEN N), deacetoxycephalosporin C (DAOC), and deacetylcephalosporin C (DAC) were monitored by on-line HPLC. The concentrations of amino acids, valine (VAL), cysteine (CYS), alpha-amino-adipic acid (alpha-AAA), the dipeptide alpha-amino-adipyl-cysteine (AC), and the tripeptide alpha-amino-adipyl-cysteinyl-valine (ACV) were determined by off-line HPLC. By reducing the pO2 in the production phase from 40 to 5% of its saturation value, the CPC concentration diminished from 7.2 to 1.1 g l-1 and the PEN N concentration increased from 2.57 to 7.65 g l-1. The DAC concentration also dropped from 3.13 to 0.42 g l-1; however, the DAOC concentration was less influenced. The concentrations of AC and ACV were also less affected. The small DOC did not lead to an accumulation of the intermediate AC and ACV during the production phase. With increasing DOC in the range of 5-20%, the maximal specific production rate, the cell mass concentration-based and the substrate-based yield coefficients for CPC increased almost linearly, and fell back for PEN N.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
32.
We have identified four surface 83 kDa proteins of pI values 6.3, 6.4, 6.5 and 6.6 in T. cruzi trypomastigotes which specifically bind to rat heart myoblasts. These proteins were purified by isoelectric focusing and anion-exchange chromatography in an FPLC system. These 83 kDa proteins inhibit the attachment of trypomastigotes to myoblasts in a concentration-dependent manner, indicating that these trypomastigote proteins mediate the attachment of trypomastigotes to heart myoblasts.  相似文献   
33.
G W Zhou  P S Ho 《Biochemistry》1990,29(31):7229-7236
Methylation of cytosine bases at the C5 position has been known to stabilize Z-DNA. We had previously predicted from calculations of solvent-accessible surfaces that the methyl group at the same position of thymine has a destabilizing effect on Z-DNA. In the current studies, the sequence d(m5CGUAm5CG) has been crystallized and its structure solved as Z-DNA to 1.3-A resolution. A well-defined octahedral hexaaquomagnesium complex was observed to bridge the O4 oxygens of the adjacent uridine bases at the major groove surface, and four well-structured water molecules were found in the minor groove crevice at the d(UA) dinucleotide. These solvent interactions were not observed in the previously published Z-DNA structure of the analogous d(m5CGTAm5CG) sequence. A comparison of the thymine and uridine structures supports our prediction that demethylation of thymine bases helps to stabilize Z-DNA. A comparison of this d(UA)-containing Z-DNA structure with the analogous d(TA) structure shows that access of the O4 position is hindered by the C5 methyl of thymine due to steric and hydrophobic inhibition. In the absence of the methyl group, a magnesium-water complex binds to and slightly affects the structure of the Z-DNA major groove surface. This perturbation of the solvent structure at the major groove surface is translated into a much larger 1.41-A widening of the minor groove crevice, thereby allowing the specific binding of two water molecules at well-defined sites of each internal d(UA) base pair. Possible mechanisms by which modifications at the major groove surface of Z-DNA can affect the solvent properties of the minor groove crevice are discussed.  相似文献   
34.
Aging is a major risk factor for many diseases,especially in highly prevalent cardiopulmonary comorbidities and infectious diseases including Coronavirus Diseas...  相似文献   
35.
A subsystem impactor test for pedestrian lower limb injury evaluation has been brought in China New Car Assessment Protocol(CNCAP).Concerning large anthropometr...  相似文献   
36.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   
37.
Identifying the mechanisms that underlie the assembly of plant communities is critical to the conservation of terrestrial biodiversity. However, it is seldom measured or quantified how much deterministic versus stochastic processes contribute to community assembly in alpine meadows. Here, we measured the decay in community similarity with spatial and environmental distance in the Zoige Plateau. Furthermore, we used redundancy analysis (RDA) to divide the variations in the relative abundance of plant families into four components to assess the effects of environmental and spatial. Species assemblage similarity liner declined with geographical distance (p < .001, R 2 = .6388), and it decreased significantly with increasing distance of total phosphorus (TP), alkali‐hydrolyzable nitrogen (AN), available potassium (AK), nitrate nitrogen (NO3 +–N), and ammonia nitrogen (NH4 +–N). Environmental and spatial variables jointly explained a large proportion (55.2%) of the variation in the relative abundance of plant families. Environmental variables accounted for 13.1% of the total variation, whereas spatial variables accounted for 11.4%, perhaps due to the pronounced abiotic gradients in the alpine areas. Our study highlights the mechanism of plant community assembly in the alpine ecosystem, where environmental filtering plays a more important role than dispersal limitation. In addition, a reasonably controlled abundance of Compositae (the family with the highest niche breadth and large niche overlap value with Gramineae and Cyperaceae) was expected to maintain sustainable development in pastoral production. These results suggest that management measures should be developed with the goal of improving or maintaining suitable local environmental conditions.  相似文献   
38.
39.
Pain is a multidimensional perception that includes unpleasant somatosensory and affective experiences; however, the underlying neural circuits that mediate different components of pain remain elusive. Although hyperactivity of basolateral amygdala glutamatergic (BLAGlu) neurons is required for the somatosensory and emotional processing of pain, the precise excitatory inputs to BLAGlu neurons and their roles in mediating different aspects of pain are unclear. Here, we identified two discrete glutamatergic neuronal circuits in male mice: a projection from the insular cortex glutamatergic (ICGlu) to BLAGlu neurons, which modulates both the somatosensory and affective components of pain, and a projection from the mediodorsal thalamic nucleus (MDGlu) to BLAGlu neurons, which modulates only the aversive-affective component of pain. Using whole-cell recording and fiber photometry, we found that neurons within the IC→BLA and MD→BLA pathways were activated in mice upon inflammatory pain induced by injection of complete Freund’s adjuvant (CFA) into their paws. Optical inhibition of the ICGlu→BLA pathway increased the nociceptive threshold and induced behavioral place preference in CFA mice. In contrast, optical inhibition of the MDGlu→BLA pathway did not affect the nociceptive threshold but still induced place preference in CFA mice. In normal mice, optical activation of the ICGlu→BLA pathway decreased the nociceptive threshold and induced place aversion, while optical activation of the MDGlu→BLA pathway only evoked aversion. Taken together, our results demonstrate that discrete ICGlu→BLA and MDGlu→BLA pathways are involved in modulating different components of pain, provide insights into its circuit basis, and better our understanding of pain perception.  相似文献   
40.
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号