Reactions of 1,1′-(1,4-butanediyl)bis-1H-benzimidazole (bbbm) with Cd(II), Ni(II), or Co(II) afford three organic-metal polymers: {[Cd(bbbm)(SO4)(H2O)2]CH3OH}n (1), {[Ni(bbbm)2(H2O)2](NO3)2 · 2CH3OH · 6H2O}n (2) and {[Co(bbbm)2(H2O)2](NO3)2 · 2CH3OH · 6H2O}n (3). In 1, bbbm and coordinate to Cd(II) simultaneously leading to a 3-D structure. In 2 and 3, each bridging bbbm ligand links two Ni(II) or Co(II) ions forming the 2-D layered structure with (4, 4) grid units. Each (4, 4) grid unit is a 44-membered ring and constructed by four bbbm ligands acting as four sides and four Ni(II) or Co(II) ions representing four corners. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results show that the DMF solution of 2 possesses both the large third-order NLO absorptive and strong refractive behaviors; and 3’s shows large NLO absorptive effect and weak NLO refractive behavior. A reasonably good fit between the experimental data and the theoretical curve suggests that the experimentally obtained NLO effects are effective third-order in nature. 相似文献
This study evaluated the succession process of aquatic macrophytes after 150 years of alluviation in the Modern Yellow River Delta, China, and identified the roles of various environmental parameters that regulate vegetation succession. From 2007 to 2008, 214 quadrats were surveyed and 19 environmental parameters were measured, including elevation, plot distance from the seashore, 10 water parameters, and 7 soil parameters. Forty-six aquatic macrophytes belonging to 20 families and 34 genera were identified across the entire delta. Emergent and submerged plants were the most frequent species, accounting for 58.7 and 34.8 % of all species, respectively. Detrended canonical correspondence analysis showed that the presence of aquatic macrophytes in this delta was primarily regulated by water salinity, soil salinity, and distance from the seashore, followed by nutrient concentrations (e.g., NH4+, total soil N and PO4? of water). Salinity-tolerant species (e.g., Ruppia maritima, Phragmites australis, and Typha angustifolia) tended to be widely distributed across the entire delta. In contrast, salinity-sensitive species (e.g., Ceratophyllum demersum, Hydrilla verticillata, and Potamogeton malaianus) tended to be distributed in areas at the early stages of succession, which were relatively distant from the shore. Moreover, this study also confirmed that species richness and diversity were negatively correlated with water and soil salinity, which in turn were negatively correlated with plot distance from the shore. These data indicate that the primary drivers of aquatic macrophyte succession in this delta are water and soil salinity. The information assimilated here is used to propose management practices for the protection of aquatic macrophytes in the Yellow River Delta. 相似文献
During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an ‘affinity-capture’ procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3′-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3′-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3′-blocked intermediate. 相似文献
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
(R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity. 相似文献
Dickkopf-related protein 4 (DKK4) is a member of the dickkopf family and an inhibitor of the Wnt/β-catenin signalling pathway. This review surveyed the single nucleotide polymorphisms (SNPs), copy number variations (CNVs), hypermethylation, regulation mechanism, correlation with clinicopathological parameters and chemotherapeutic resistance of DKK4. The signal pathways involved in DKK4 mainly include Wnt/β-catenin pathway and Wnt-JNK pathway independent β-catenin. DKK4 expression was upregulated in Renal Cell Carcinoma (RCC), Colorectal Cancer, Gastric Cancer (GC), Non-small Cell Lung Cancer (NSCLC) and Epithelial Ovarian Cancer (EOC), while downregulated in Hepatocellular Carcinoma (HCC). DKK4 is not only involved in tumour growth, invasion, migration and chemotherapy resistance, but also in osteoblastogenesis and secondary hair or meibomian gland formation. DKK4 has also been linked to schizophrenia. 相似文献
Screening assays using target-based affinity selection coupled with high-sensitivity detection technologies to identify small-molecule hits from chemical libraries can provide a useful discovery approach that complements traditional assay systems. Affinity selection-mass spectrometry (AS-MS) is one such methodology that holds promise for providing selective and sensitive high-throughput screening platforms. Although AS-MS screening platforms have been used to discover small-molecule ligands of proteins from many target families, they have not yet been used routinely to screen integral membrane proteins. The authors present a proof-of-concept study using size exclusion chromatography coupled to AS-MS to perform a primary screen for small-molecule ligands of the purified muscarinic M2 acetylcholine receptor, a G-protein-coupled receptor. AS-MS is used to characterize the binding mechanisms of 2 newly discovered ligands. NGD-3350 is a novel M2-specific orthosteric antagonist of M2 function. NGD-3366 is an allosteric ligand with binding properties similar to the allosteric antagonist W-84, which decreases the dissociation rate of N-methyl-scopolamine from the M2 receptor. Binding properties of the ligands discerned from AS-MS assays agree with those from in vitro biochemical assays. The authors conclude that when used with appropriate small-molecule libraries, AS-MS may provide a useful high-throughput assay system for the discovery and characterization of all classes of integral membrane protein ligands, including allosteric modulators. 相似文献