首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5780篇
  免费   589篇
  国内免费   703篇
  7072篇
  2024年   13篇
  2023年   66篇
  2022年   187篇
  2021年   242篇
  2020年   219篇
  2019年   265篇
  2018年   231篇
  2017年   186篇
  2016年   269篇
  2015年   327篇
  2014年   450篇
  2013年   434篇
  2012年   503篇
  2011年   447篇
  2010年   293篇
  2009年   309篇
  2008年   365篇
  2007年   294篇
  2006年   288篇
  2005年   229篇
  2004年   241篇
  2003年   208篇
  2002年   196篇
  2001年   102篇
  2000年   88篇
  1999年   85篇
  1998年   73篇
  1997年   70篇
  1996年   46篇
  1995年   34篇
  1994年   27篇
  1993年   24篇
  1992年   46篇
  1991年   33篇
  1990年   20篇
  1989年   18篇
  1988年   11篇
  1987年   19篇
  1986年   5篇
  1985年   13篇
  1984年   12篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1970年   5篇
  1968年   8篇
  1967年   6篇
  1966年   7篇
  1965年   5篇
  1964年   4篇
排序方式: 共有7072条查询结果,搜索用时 31 毫秒
21.
A novel cephalosporin derivative of monohydroguaiaretic acid (cephem-M(3)N, 7) was synthesized and found to possess anticancer activity against human leukemia (K562), breast carcinoma (MCF7), human lung cancer (A549), human colon cancer (Colo205) and pancreatic cancer cells (Capan2 and MiaPaCa2). A tumor targeting fusion protein (dsFv3-beta-lactamase) was also used in conjunction with cephem-based M(3)N 7 and its potency toward K562, MCF7, A549, Colo205, Capan2, and MiaPaCa2 was found to approach that of the free M(3)N (4). In the presence of dsFv3-beta-lactamase, tumor cells were found to be much more susceptible to conjugate 7 than normal human embryonic lung (HEL) cells and normal fibroblasts (Hef522). These notions provide a new approach to the use of nordihydroguaiaretic acid (NDGA) and its derivatives for antitumor therapy.  相似文献   
22.
In mammals and yeast, tail‐anchored (TA) membrane proteins destined for the post‐translational pathway are safely delivered to the endoplasmic reticulum (ER) membrane by a well‐known targeting factor, TRC40/Get3. In contrast, the underlying mechanism for translocation of TA proteins in plants remains obscure. How this unique eukaryotic membrane‐trafficking system correctly distinguishes different subsets of TA proteins destined for various organelles, including mitochondria, chloroplasts and the ER, is a key question of long standing. Here, we present crystal structures of algal ArsA1 (the Get3 homolog) in a distinct nucleotide‐free open state and bound to adenylyl‐imidodiphosphate. This approximately 80‐kDa protein possesses a monomeric architecture, with two ATPase domains in a single polypeptide chain. It is capable of binding chloroplast (TOC34 and TOC159) and mitochondrial (TOM7) TA proteins based on features of its transmembrane domain as well as the regions immediately before and after the transmembrane domain. Several helices located above the TA‐binding groove comprise the interlocking hook‐like motif implicated by mutational analyses in TA substrate recognition. Our data provide insights into the molecular basis of the highly specific selectivity of interactions of algal ArsA1 with the correct sets of TA substrates before membrane targeting in plant cells.  相似文献   
23.
A purified polysaccharide ACDP-2 was isolated from water extract of the stems of Cistanche deserticola. Chemical and spectroscopic analyses indicated that ACDP-2 is a highly branched arabinogalactan polymer that composes of linked d-galactopyranose and d-glucopyranose, which contains predominantly a branching point at the 6-carbon. The branched side-chains compose of terminal-, 1,5-, and 1,3,5-linked arabinofuranosyl residues. ACDP-2 showed an effect in stimulating the immune response, which when applied onto the cultured mouse lymphocytes induced the cell proliferation in a dose-dependent manner.  相似文献   
24.
朱梅  张腾  李黎 《生理科学进展》2020,51(3):203-206
胆汁是由肝细胞分泌的胆道内的消化液,为等渗溶液,主要成分包括胆盐、胆汁酸、胆红素、还原型谷胱甘肽及其结合物、氧化型谷胱甘肽等。在消化期,胆汁可由肝脏和胆囊大量排到十二指肠,将脂肪乳化成微滴以利于消化;还能促进脂肪酸及脂溶性维生素的吸收。生理状态下胆汁不会反流入胃及食管,也不会损伤肠道。病理状态下胆汁会反流入胃甚至反流到食管损伤胃及食管黏膜,在一些情况下胆汁甚至会损伤肠道的黏膜。目前认为胆汁是较明确的致癌因素,与消化道肿瘤的相关性较大,但仍缺乏针对性的防治方案。明确胆汁对消化道黏膜的损伤机制,有助探索消化道肿瘤防治的新靶点。本文回顾了近年来有关胆汁对食管黏膜、胃黏膜及肠黏膜损伤机制的研究进展,以期为进一步的研究提供思路。  相似文献   
25.
26.
β‐Arrestins have been implicated in the regulation of multiple signalling pathways. However, their role in organism development is not well understood. In this study, we report a new in vivo function of the Drosophila β‐arrestin Kurtz (Krz) in the regulation of two distinct developmental signalling modules: MAPK ERK and NF‐κB, which transmit signals from the activated receptor tyrosine kinases (RTKs) and the Toll receptor, respectively. Analysis of the expression of effectors and target genes of Toll and the RTK Torso in krz maternal mutants reveals that Krz limits the activity of both pathways in the early embryo. Protein interaction studies suggest a previously uncharacterized mechanism for ERK inhibition: Krz can directly bind and sequester an inactive form of ERK, thus preventing its activation by the upstream kinase, MEK. A simultaneous dysregulation of different signalling systems in krz mutants results in an abnormal patterning of the embryo and severe developmental defects. Our findings uncover a new in vivo function of β‐arrestins and present a new mechanism of ERK inhibition by the Drosophila β‐arrestin Krz.  相似文献   
27.
Germination of seeds proceeds in general in two phases, an initial imbibition phase and a subsequent growth phase. In grasses like barley, the latter phase is evident as the emergence of the embryonic root (radicle). The hormone abscisic acid (ABA) inhibits germination because it prevents the embryo from entering and completing the growth phase. Genetic and physiological studies have identified many steps in the ABA signal transduction cascade, but how it prevents radicle elongation is still not clear. For elongation growth to proceed, uptake of osmotically active substances (mainly K(+)) is essential. Therefore, we have addressed the question of how the activity of K(+) permeable ion channels in the plasma membrane of radicle cells is regulated under conditions of slow (+ABA) and rapid germination (+fusicoccin). We found that ABA arrests radicle growth, inhibits net K(+) uptake and reduces the activity of K(+) (in) channels as measured with the patch-clamp technique. In contrast, fusicoccin (FC), a well-known stimulator of germination, stimulates radicle growth, net K(+) uptake and reduces the activity of K(+) (out) channels. Both types of channels are under the control of 14-3-3 proteins, known as integral components of signal transduction pathways and instrumental in FC action. Intriguingly, 14-3-3 affected both channels in an opposite fashion: whereas K(+) (in) channel activity was fully dependent upon 14-3-3 proteins, K(+) (out) channel activity was reduced by 14-3-3 proteins by 60%. Together with previous data showing that 14-3-3 proteins control the activity of the plasma membrane H(+)-ATPase, this makes 14-3-3 a prime candidate for molecular master regulator of the cellular osmo-pump. Regulation of the osmo-pump activity by ABA and FC is an important mechanism in controlling the growth of the embryonic root during seed germination.  相似文献   
28.
Chemerin is a novel chemokine that binds to the G protein-coupled receptor (GPCR) ChemR23, also known as chemokine-like receptor 1 (CMKLR1). It is secreted as a precursor and executes pro-inflammatory functions when the last six amino acids are removed from its C-terminus by serine proteases. After maturation, Chemerin attracts dendritic cells and macrophages through binding to ChemR23. We report a new method for expression and purification of mature recombinant human Chemerin (rhChemerin) using a prokaryotic system. After being expressed in bacteria, rhChemerin in inclusion bodies was denatured using 6 M guanidine chloride. Soluble rhChemerin was prepared by the protein-specific renaturation solution under defined conditions. It was subsequently purified using ion-exchange columns to more than 95% purity with endotoxin level <1.0 EU/μg. We further demonstrated its biological activities for attracting migration of human dendritic cells and murine macrophages in vitro using established chemotaxis assays.  相似文献   
29.
Bacterial diversity of the mucosal biopsies from human jejunum, distal ileum, ascending colon and rectum were compared by analysis of PCR-amplified 16S rDNA clone libraries. A total of 347 clones from the mucosal biopsies were partially sequenced and assigned to six phylogenetic phyla of the domain Bacteria: Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Verrucomicrobia, and Actinobacteria. The jejunum sample had least microbial diversity compared to the other samples and a trend towards highest diversity in ascending colon was observed. The clone libraries of distal ileum, ascending colon and rectum were not significantly different from each other (P>0.0043), but they differed significantly from the jejunum library (P=0.001). The population of sequences retrieved from jejunal biopsies was dominated by sequences closely related to Streptococcus (67%), while the population of sequences derived from distal ileum, ascending colon and rectum were dominated by sequences affiliated with Bacteroidetes (27-49%), and Clostridium clusters XIVa (20-34%) and IV (7-13%). The results indicate that the microbial community in jejunum is different from those in distal ileum, ascending colon and rectum, and that the major phylogenetic groups are similar from distal ileum to rectum.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号