首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109926篇
  免费   8484篇
  国内免费   6838篇
  2024年   138篇
  2023年   1277篇
  2022年   2803篇
  2021年   5434篇
  2020年   3570篇
  2019年   4377篇
  2018年   4355篇
  2017年   3231篇
  2016年   4599篇
  2015年   6678篇
  2014年   7870篇
  2013年   8315篇
  2012年   9962篇
  2011年   8870篇
  2010年   5447篇
  2009年   4747篇
  2008年   5586篇
  2007年   4925篇
  2006年   4373篇
  2005年   3331篇
  2004年   2933篇
  2003年   2531篇
  2002年   2206篇
  2001年   2001篇
  2000年   1860篇
  1999年   1842篇
  1998年   1017篇
  1997年   1138篇
  1996年   1017篇
  1995年   919篇
  1994年   942篇
  1993年   666篇
  1992年   993篇
  1991年   838篇
  1990年   613篇
  1989年   559篇
  1988年   485篇
  1987年   411篇
  1986年   388篇
  1985年   390篇
  1984年   211篇
  1983年   197篇
  1982年   137篇
  1981年   114篇
  1980年   107篇
  1979年   115篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
982.
983.
Zanthoxylum armatum and Zanthoxylum bungeanum, known as ‘Chinese pepper’, are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.  相似文献   
984.
Developing a new rice variety requires tremendous efforts and years of input. To improve the defect traits of the excellent varieties becomes more cost and time efficient than breeding a completely new variety. Kongyu 131 is a high-performing japonica variety with early maturity, high yield, wide adaptability and cold resistance, but the poor-lodging resistance hinders the industrial production of Kongyu 131 in the Northeastern China. In this study, we attempted to improve the lodging resistance of Kongyu 131 from perspectives of both gene and trait. On the one hand, by QTL analysis and fine mapping we discovered the candidate gene loci. The following CRISPR/Cas9 and transgenic complementation study confirmed that Sd1 dominated the lodging resistance and favourable allele was mined for precise introduction and improvement. On the other hand, the Sd1 allelic variant was identified in Kongyu 131 by sequence alignment, then introduced another excellent allelic variation by backcrossing. Then, the two new resulting Kongyu 131 went through the field evaluation under different environments, planting densities and nitrogen fertilizer conditions. The results showed that the plant height of upgraded Kongyu 131 was 17%–26% lower than Kongyu 131 without penalty in yield. This study demonstrated a precise and targeted way to update the rice genome and upgrade the elite rice varieties by improving only a few gene defects from the perspective of breeding.  相似文献   
985.
986.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   
987.
Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar–ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source–sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.  相似文献   
988.
Flowering time is one of important agronomic traits determining the crop yield and affected by high temperature. When facing high ambient temperature, plants often initiate early flowering as an adaptive strategy to escape the stress and ensure successful reproduction. However, here we find opposing ways in the short-day crop soybean to respond to different levels of high temperatures, in which flowering accelerates when temperature changes from 25 to 30 °C, but delays when temperature reaches 35 °C under short day. phyA-E1, possibly photoperiodic pathway, is crucial for 35 °C-mediated late flowering, however, does not contribute to promoting flowering at 30 °C. 30 °C-induced up-regulation of FT2a and FT5a leads to early flowering, independent of E1. Therefore, distinct responsive mechanisms are adopted by soybean when facing different levels of high temperatures for successful flowering and reproduction.  相似文献   
989.
Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.  相似文献   
990.
Ubc13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity still remain largely unknown. Here, we used molecular biological, pathological, biochemical, and genetic approaches to evaluate the roles of rice OsUbc13 in response to pathogens. The OsUbc13-RNA interference (RNAi) lines with lesion mimic phenotypes displayed a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in defence-related genes expression or hormones as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. Strikingly, OsUbc13 directly interacts with OsSnRK1a, which is the α catalytic subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase-1) and acts as a positive regulator of broad-spectrum disease resistance in rice. In the OsUbc13-RNAi plants, although the protein level of OsSnRK1a did not change, its activity and ABA sensitivity were obviously enhanced, and the K63-linked polyubiquitination was weaker than that of wild-type Dongjin (DJ). Overexpression of the deubiquitinase-encoding gene OsOTUB1.1 produced similar effects with inhibition of OsUbc13 in affecting immunity responses, M. oryzae resistance, OsSnRK1a ubiquitination, and OsSnRK1a activity. Furthermore, re-interfering with OsSnRK1a in one OsUbc13-RNAi line (Ri-3) partially restored its M. oryzae resistance to a level between those of Ri-3 and DJ. Our data demonstrate OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号