首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16571篇
  免费   1248篇
  国内免费   1258篇
  19077篇
  2024年   43篇
  2023年   242篇
  2022年   578篇
  2021年   951篇
  2020年   574篇
  2019年   761篇
  2018年   762篇
  2017年   560篇
  2016年   787篇
  2015年   1041篇
  2014年   1291篇
  2013年   1417篇
  2012年   1510篇
  2011年   1369篇
  2010年   826篇
  2009年   744篇
  2008年   845篇
  2007年   703篇
  2006年   566篇
  2005年   512篇
  2004年   425篇
  2003年   367篇
  2002年   271篇
  2001年   250篇
  2000年   224篇
  1999年   238篇
  1998年   162篇
  1997年   135篇
  1996年   125篇
  1995年   110篇
  1994年   107篇
  1993年   88篇
  1992年   103篇
  1991年   102篇
  1990年   53篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   30篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.
The present study was to test the hypothesis that 11,12-epoxyeicosatrienoic acid (11,12-EET), a metabolic product of arachidonic acid by cytochrome P450 epoxygenase, regulates nitric oxide (NO) generation of the l-arginine/NO synthase (NOS) pathway in human platelets. Human platelets were incubated in the presence or absence of different concentrations of 11,12-EET for 2 h at 37°C, followed by measurements of activities of the l-arginine/NOS pathway. Incubation with 11,12-EET increased the platelet NOS activity, nitrite production, cGMP content, and the platelet uptake of l-[3H]arginine in a concentration-dependent manner. In addition, 11,12-EET attenuated intracellular free Ca2+ accumulation stimulated by collagen, which was at least partly mediated by EET-activated l-arginine/NOS pathway. It is suggested that 11,12-EET regulates platelet function through up-regulating the activity of the l-arginine/NOS/NO pathway.  相似文献   
142.
Wang Y  Wang S  Gao YS  Chen Z  Zhou HM  Yan YB 《PloS one》2011,6(9):e24681
Creatine kinase (CK, EC 2.7.3.2) plays a key role in the energy homeostasis of excitable cells. The cytosolic human CK isoenzymes exist as homodimers (HMCK and HBCK) or a heterodimer (MBCK) formed by the muscle CK subunit (M) and/or brain CK subunit (B) with highly conserved three-dimensional structures composed of a small N-terminal domain (NTD) and a large C-terminal domain (CTD). The isoforms of CK provide a novel system to investigate the sequence/structural determinants of multimeric/multidomain protein folding. In this research, the role of NTD and CTD as well as the domain interactions in CK folding was investigated by comparing the equilibrium and kinetic folding parameters of HMCK, HBCK, MBCK and two domain-swapped chimeric forms (BnMc and MnBc). Spectroscopic results indicated that the five proteins had distinct structural features depending on the domain organizations. MBCK BnMc had the smallest CD signals and the lowest stability against guanidine chloride-induced denaturation. During the biphasic kinetic refolding, three proteins (HMCK, BnMc and MnBc), which contained either the NTD or CTD of the M subunit and similar microenvironments of the Trp fluorophores, refolded about 10-fold faster than HBCK for both the fast and slow phase. The fast folding of these three proteins led to an accumulation of the aggregation-prone intermediate and slowed down the reactivation rate thereby during the kinetic refolding. Our results suggested that the intra- and inter-subunit domain interactions modified the behavior of kinetic refolding. The alternation of domain interactions based on isoenzymes also provides a valuable strategy to improve the properties of multidomain enzymes in biotechnology.  相似文献   
143.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   
144.
浙北平原水杉人工林生物量的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 本文对浙江省北部平原水杉人工林的生物量和生产力进行了测定和研究。按平均标准木法分别调查了干、枝、叶、根的生物量。据调查材料,用相对生长规律建立了估测单株林木各器官干重的回归方程,方程的相关系数和估测精度符合要求,具实用价值。研究结果表明:水杉人工林生物量随年龄的增长而增加,林带18年生后增加速度变缓,片林生物量普遍大于林带生物量,生物量组成比例因年龄而异。随着年龄的增加,年平均净生产量、叶面积指数、光能利用率均逐步加大,至18年生时,上述指标分别为17.51t/ha·a、9.1和0.77%。叶净光合生产率以速生阶段为最大,衰退阶段为最低,当叶净光合生产率急剧下降时,可实施主伐更新。  相似文献   
145.
To understand the role of the insulin receptor pathway in beta-cell function, we have generated stable beta-cells (betaIRS1-A) that overexpress by 2-fold the insulin receptor substrate-1 (IRS-1) and compared them to vector-expressing controls. IRS-1 overexpression dramatically increased basal cytosolic Ca2+ levels from 81 to 278 nM, but it did not affect Ca2+ response to glucose. Overexpression of the insulin receptor also caused an increase in cytosolic Ca2+. Increased cytosolic Ca2+ was due to inhibition of Ca2+ uptake by the endoplasmic reticulum, because endoplasmic reticulum Ca2+ uptake and content were reduced in betaIRS1-A cells. Fractional insulin secretion was significantly increased 2-fold, and there was a decrease in betaIRS1-A insulin content and insulin biosynthesis. Steady-state insulin mRNA levels and glucose-stimulated ATP were unchanged. High IRS-1 levels also reduced beta-cell proliferation. These data demonstrate a direct link between the insulin receptor signaling pathway and the Ca2+-dependent pathways regulating insulin secretion of beta-cells. We postulate that during regulated insulin secretion, released insulin binds the beta-cell insulin receptor and activates IRS-1, thus further increasing cytosolic Ca2+ by reducing Ca2+ uptake. We suggest the existence of a novel pathway of autocrine regulation of intracellular Ca2+ homeostasis and insulin secretion in the beta-cell of the endocrine pancreas.  相似文献   
146.
Endothelin-1 (ET-1) is a 21 amino acid peptide released from several types of bronchial cells. It operates through two types of receptors, type A(ET-RA) and type B(ET-RB) and has various activities in the pathophysiology of atopic asthma. These genes are localised on different chromosomes where genome-wide searches have identified linkage for atopic asthma, thus supporting the candidacy of ET-1 and its receptors for atopic asthma. A genetic association study was performed with variants of these three genes in both British (n = 300) and Japanese populations (n = 200). No significant association was found between variants of EDN1 and EDNRB genes, and atopic asthma in either population. However, variants of EDNRA gene showed a marginal association with atopy [odds = 0.39(95% CI: 0.17-0.89), p = 0.022, Pc = 0.066], especially with antigen specific IgE levels [odds = 0.31 (95% CI: 0.20-0.77), p = 0.006, Pc = 0.018] in the British population. These findings suggest that EDNRA is a major candidate locus for atopy on chromosome 4.  相似文献   
147.
Production of laccase using a submerged culture of Trametes versicolor sdu-4 was optimized using a central composite design of the Response Surface Methodology. Optimized conditions gave a laccase yield of 4,213 U/L which was approximately three times of that in basal medium. The laccase was purified to homogeneity using a three-step process. The overall yield of the purification was 58%, with a purification fold of 11.4 and a specific activity of 1320.7 U/mg protein. The molecular mass of the laccase was 60 kDa. The optimum pH values of the enzyme were 2.2, 3.7, and 7 for the oxidations of ABTS, DMP, and syringaldazine, respectively. The enzyme had adaptability to a broad pH range and high temperature and wsa stable at pH 3.0 ∼ 10.0. The half-life of this laccase at 70°C was 2.2 h. Methyl red, 2-bromophenol, and 4-bromophenol were oxidized by the purified laccase in the absence of mediators. Purified laccase was effective in the decolorization of several dyes and was not inhibited by Cu2+, Mn2+, Zn2+, Na+, K+, Mg2+, Ba2+, and Ca2+ at 5 mM. These excellent characteristics made it a highly attractive candidate for industrial use.  相似文献   
148.
149.

Key message

Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B.

Abstract

Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.
  相似文献   
150.
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor‐beta1 (TGF‐β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF‐β1 signalling and pancreatic fibrosis. Sprague‐Dawley rats fed with a Lieber‐DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP‐2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF‐β1 which was paralleled by an increased number of TLR4‐positive or TGF‐β1‐positive Mφs or PSCs in ALC‐fed rats. In vitro, TLR4 or TGF‐β1 production in Mφs or RP‐2 cells was up‐regulated by LPS. LPS alone or in combination with TGF‐β1 significantly increased type I collagen and α‐SMA production and Smad2 and 3 phosphorylation in serum‐starved RP‐2 cells. TGF‐β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si‐TLR4 RNA or by inhibitors of MyD88/NF‐kB. Additionally, knockdown of Bambi with Si‐Bambi RNA significantly increased TGF‐β1 signalling in RP‐2 cells. These findings indicate that LPS increases TGF‐β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF‐β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF‐kB activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号