首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25573篇
  免费   2114篇
  国内免费   2124篇
  29811篇
  2024年   66篇
  2023年   354篇
  2022年   809篇
  2021年   1335篇
  2020年   868篇
  2019年   1060篇
  2018年   1005篇
  2017年   750篇
  2016年   1056篇
  2015年   1561篇
  2014年   1837篇
  2013年   1940篇
  2012年   2373篇
  2011年   2030篇
  2010年   1293篇
  2009年   1025篇
  2008年   1394篇
  2007年   1169篇
  2006年   1057篇
  2005年   900篇
  2004年   745篇
  2003年   637篇
  2002年   580篇
  2001年   490篇
  2000年   378篇
  1999年   431篇
  1998年   255篇
  1997年   222篇
  1996年   257篇
  1995年   209篇
  1994年   253篇
  1993年   152篇
  1992年   220篇
  1991年   183篇
  1990年   174篇
  1989年   113篇
  1988年   83篇
  1987年   75篇
  1986年   49篇
  1985年   63篇
  1984年   48篇
  1983年   40篇
  1982年   37篇
  1981年   24篇
  1980年   16篇
  1979年   25篇
  1977年   15篇
  1976年   16篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
931.
932.
江新能  吕仕洪  李纯  黄立铨   《广西植物》1994,14(3):255-259
本文报道对油梨果实的生长及内含物的变化的观察结果.果实生长发育过程中,以6—7份生长最快,干物质及脂肪含量由低到高变化,以11月份增加最快,蛋白质含量由高到低递诚.11月份后含量相对稳定,总糖和维生素C含量随果实的发育程度而下降。  相似文献   
933.

Background  

Like microarray-based investigations, high-throughput proteomics techniques require machine learning algorithms to identify biomarkers that are informative for biological classification problems. Feature selection and classification algorithms need to be robust to noise and outliers in the data.  相似文献   
934.
Lu Y  Guo J 《Carbohydrate research》2006,341(5):610-615
A single-crystal of SmCl3·C5H10O5·5H2O was obtained from methanol-water solution and its structure determined by X-ray. Two forms of the complex as a pair of anomers and related conformers were found in the single-crystal in a disordered state. One ligand is α-d-ribopyranose in the 4C1 conformation and the other one is β-d-ribopyranose. The anomeric ratio is 1:1. Both ligands provide three hydroxyl groups in ax-eq-ax orientation for coordination. The Sm3+ ion is nine-coordinated with five Sm-O bonds from water molecules, three Sm-O bonds from hydroxyl groups of the d-ribopyranose and one Sm-Cl bond. The hydroxyl groups, water molecules and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accord with those of X-ray diffraction.  相似文献   
935.
936.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   
937.
Previous studies indicated that multipotent progenitors exist in early fetuses that do not contain long-term reconstituting (LTR) activity. However, it remained unclear whether these multipotent progenitors are committed to the hemopoietic lineage or are immature mesodermal cells or hemangioblasts. In this study, we have succeeded in enriching the multipotent progenitors that are capable of generating myeloid, T, and B cells in the LFA-1(-) subpopulation of TER-119(-)c-kit(+)CD45(+) cells from the aorta-gonad-mesonephros (AGM) region of day 10 fetuses. We found that these day 10 AGM LFA-1(-) cells do not show the LTR activity, whereas day 11 AGM LFA-1(-) cells do have such an activity. These results strongly suggest that multipotent progenitors lacking LTR activity emerge as CD45(+) hemopoietic progenitor cells in the AGM region on the 10th day of gestation, and such p-Multi mature into hemopoietic stem cells by acquiring LTR activity.  相似文献   
938.
Pan J  Lin W  Wang W  Han Z  Lu C  Yao S  Lin N  Zhu D 《Biophysical chemistry》2001,89(2-3):193-199
By use of pulse radiolysis techniques, the radical cations of purine nucleotides have been successfully produced by the SO4- ion oxidation. Time-resolved spectroscopic evidence is provided that the one-electron-oxidized radicals of dAMP and dGMP can be efficiently repaired by aromatic amino acids (including tyrosine and tryptophan) via electron transfer reaction. As a model peptide, Arg-Tyr-AcOH was also investigated with regard to its interaction with deprotonated purine radical cations. The rate constants of the electron transfer reactions were determined to be (1 approximately 5) x 10(8) dm(3) mol(-1) s(-1). These results suggest that the aromatic amino acids in DNA-associated proteins may play some role in electron transfer reactions through DNA.  相似文献   
939.
Dendroctonus valens is an invasive pest in coniferous forests of northern China. It was suspected of being responsible for the death of more than three million Pinus tabuliformis trees. The present study sought to identify the ophiostomatoid fungi associated with D. valens in northern China and understand the possible role of these fungi in the pine decline. On the basis of morphology, physiology, mating compatibility and phylogenetic analyses of multiple DNA sequences, seven species of ophiostomatoid fungi were isolated from and around D. valens galleries: Leptographium alethinum, Grosmannia koreana (teleomorph of L. koreanum), L. procerum, L. sinoprocerum, L. truncatum, Pesotum aureum and P. pini. All have been recorded for the first time in China. Among them, the occurrence of the dominant species L. procerum is positively linked to attack intensities of D. valens. The pathogenicity of four species (L. koreanum, L. procerum, L. sinoprocerum and L. truncatum) was tested on mature P. tabuliformis trees by stem inoculation. All inoculated strains caused significant necrotic lesions on the inner bark. However, L. koreanum and L. truncatum induced more extensive lesions than L. procerum and L. sinoprocerum. Their association with D. valens and the P. tabuliformis decline is discussed.  相似文献   
940.
Tyrosine-83, a residue which is conserved in all halobacterial retinal proteins, is located at the extracellular side in helix C of bacteriorhodopsin. Structural studies indicate that its hydroxyl group is hydrogen bonded to Trp189 and possibly to Glu194, a residue which is part of the proton release complex (PRC) in bacteriorhodopsin. To elucidate the role of Tyr83 in proton transport, we studied the Y83F and Y83N mutants. The Y83F mutation causes an 11 nm blue shift of the absorption spectrum and decreases the size of the absorption changes seen upon dark adaptation. The light-induced fast proton release, which accompanies formation of the M intermediate, is observed only at pH above 7 in Y83F. The pK(a) of the PRC in M is elevated in Y83F to about 7.3 (compared to 5.8 in WT). The rate of the recovery of the initial state (the rate of the O --> BR transition) and light-induced proton release at pH below 7 is very slow in Y83F (ca. 30 ms at pH 6). The amount of the O intermediate is decreased in Y83F despite the longer lifetime of O. The Y83N mutant shows a similar phenotype in respect to proton release. As in Y83F, the recovery of the initial state is slowed several fold in Y83N. The O intermediate is not seen in this mutant. The data indicate that the PRC is functional in Y83F and Y83N but its pK(a) in M is increased by about 1.5 pK units compared to the WT. This suggests that Tyr83 is not the main source for the proton released upon M formation in the WT; however, Tyr83 is involved in the proton release affecting the pK(a) of the PRC in M and the rate of proton transport from Asp85 to PRC during the O --> bR transition. Both the Y83F and the Y83N mutations lead to a greatly decreased functionality of the pigment at high pH because most of the pigment is converted into the inactive P480 species, with a pK(a) 8-9.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号