首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25573篇
  免费   2114篇
  国内免费   2124篇
  29811篇
  2024年   66篇
  2023年   354篇
  2022年   809篇
  2021年   1335篇
  2020年   868篇
  2019年   1060篇
  2018年   1005篇
  2017年   750篇
  2016年   1056篇
  2015年   1561篇
  2014年   1837篇
  2013年   1940篇
  2012年   2373篇
  2011年   2030篇
  2010年   1293篇
  2009年   1025篇
  2008年   1394篇
  2007年   1169篇
  2006年   1057篇
  2005年   900篇
  2004年   745篇
  2003年   637篇
  2002年   580篇
  2001年   490篇
  2000年   378篇
  1999年   431篇
  1998年   255篇
  1997年   222篇
  1996年   257篇
  1995年   209篇
  1994年   253篇
  1993年   152篇
  1992年   220篇
  1991年   183篇
  1990年   174篇
  1989年   113篇
  1988年   83篇
  1987年   75篇
  1986年   49篇
  1985年   63篇
  1984年   48篇
  1983年   40篇
  1982年   37篇
  1981年   24篇
  1980年   16篇
  1979年   25篇
  1977年   15篇
  1976年   16篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
891.
The carbon‐ and nitrogen‐rich soils of montane grasslands are exposed to above‐average warming and to altered precipitation patterns as a result of global change. To investigate the consequences of climatic change for soil nitrogen turnover, we translocated intact plant–soil mesocosms along an elevational gradient, resulting in an increase of the mean annual temperature by approx. 2 °C while decreasing precipitation from approx. 1500 to 1000 mm. Following three years of equilibration, we monitored the dynamics of gross nitrogen turnover and ammonia‐oxidizing bacteria (AOB) and archaea (AOA) in soils over an entire year. Gross nitrogen turnover and gene levels of AOB and AOA showed pronounced seasonal dynamics. Both summer and winter periods equally contributed to cumulative annual N turnover. However, highest gross N turnover and abundance of ammonia oxidizers were observed in frozen soil of the climate change site, likely due to physical liberation of organic substrates and their rapid turnover in the unfrozen soil water film. This effect was not observed at the control site, where soil freezing did not occur due to a significant insulating snowpack. Climate change conditions accelerated gross nitrogen mineralization by 250% on average. Increased N mineralization significantly stimulated gross nitrification by AOB rather than by AOA. However, climate change impacts were restricted to the 2–6 cm topsoil and rarely occurred at 12–16 cm depth, where generally much lower N turnover was observed. Our study shows that significant mineralization pulses occur under changing climate, which is likely to result in soil organic matter losses with their associated negative impacts on key soil functions. We also show that N cycling processes in frozen soil can be hot moments for N turnover and thus are of paramount importance for understanding seasonal patterns, annual sum of N turnover and possible climate change feedbacks.  相似文献   
892.
目的:考察凝结芽胞杆菌(简称TQ33)对糖尿病大鼠病理模型的降血糖作用及糖耐量的影响,方法:以四氧嘧啶制备糖尿病大鼠病理模型后,灌服TQ33口服液,以氧化酶法测定大鼠血清中血糖含量。结果:TQ33对正常大鼠的空腹血糖基本无影响,对糖耐量的Cmax有明显的降低作用,并促进血糖水平迅速恢复;TQ33可降低实验性糖尿病大鼠的血糖水平,对糖耐量的Cmax有明显的降低作用,使糖耐量减低现象好转,结论:TQ33对由于四氧嘧\啶造成的糖尿病大鼠模型有一定的治疗作用。  相似文献   
893.
Variation of soil organic carbon (SOC) and its major constraints in large spatial scale are critical for estimating global SOC inventory and projecting its future at environmental changes. By analyzing SOC and its environment at 210 sites in uncultivated land along a 3020km latitudinal transect in East Central Asia, we examined the effect of environmental factors on the dynamics of SOC. We found that SOC changes dramatically with the difference as high as 5 times in north China and 17 times in Mongolia. Regardless, C:N remains consistent about 12. Path analysis indicated that temperature is the dominant factor in the variation of SOC with a direct effect much higher than the indirect one, the former breaks SOC down the year round while the latter results in its growth mainly via precipitation in the winter half year. Precipitation helps accumulate SOC, a large part of the effect, however, is taken via temperature. NH4+-N and topography also affect SOC, their roles are played primarily via climatic factors. pH correlates significantly with SOC, the effect, however, is taken only in the winter months, contributing to the decay of SOC primarily via temperature. These factors explained as much as 79% of SOC variations, especially in the summer months, representing the major constraints on the SOC stock. Soil texture gets increasingly fine southward, it does not, however, constitute an apparent factor. Our results suggested that recent global warming should have been adversely affecting SOC stock in the mid-latitude as temperature dominates other factors as the constraint.  相似文献   
894.
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with “build-your-own” microbial host.  相似文献   
895.
The Keap1‐Nrf2/ARE signaling pathway is an important defense system against exogenous and endogenous oxidative stress injury. The dysregulation of the signaling pathway is associated with many diseases, such as cancer, diabetes, and respiratory diseases. Over the years, a wide range of natural products has provided sufficient resources for the discovery of potential therapeutic drugs. Among them, polyphenols possess Nrf2 activation, not only inhibit the production of ROS, inhibit Keap1‐Nrf2 protein–protein interaction, but also degrade Keap1 and regulate the Nrf2 related pathway. In fact, with the continuous improvement of natural polyphenols separation and purification technology and further studies on the Keap1‐Nrf2 molecular mechanism, more and more natural polyphenols monomer components of Nrf2 activators have been gradually discovered. In this view, we summarize the research status of natural polyphenols that have been found with apparent Nrf2 activation and their action modes. On the whole, this review may guide the design of novel Keap1‐Nrf2 activator.  相似文献   
896.
897.
Information on the spatial distribution of cytotypes and karyotype variation in plants is critical for studies of the origin and evolution of polyploid complexes. Here, the spatial distribution of cytological races and intraspecific variation in the karyotype of Lycoris radiata, an endemic species to East Asia, is investigated. Conventional karyotype analysis methods were used to determine ploidy level and karyotypical characteristics in 2,420 individuals from 114 populations of Lradiata nearly covering the whole distribution areas in China. Of 114 populations studied, 52 (45.61%), 58 (50.88%), and 4 (3.51%) are diploid, triploid, and mixoploid populations, respectively, with 1,224, 1,195, and 1 individuals being diploid, triploid, and tetraploid, respectively. The triploid possesses a much wider distribution range than the diploid, with the former almost occupying the entire range of this complex species in East Asia and the latter distributing in the middle and east regions of China. Triploids tend to occur at high altitudes, and the relationship between the ploidy and altitude is significantly positive but low (r= 0.103, p < 0.01). About 98.6% of examined bulbs have a common karyotype consisting of 22 or 33 acrocentric (A) chromosomes. Some aberrant chromosomes which should be generated from A‐type chromosome have been found including metacentrics (m), small metacentrics (m′), and B‐type chromosome. The results can provide a fundamental cytogeographic data for further studies on the evolutionary origins and adaptive divergences of polyploids, especially the triploid, within Lradiata using molecular and/or ecological methods in the future.  相似文献   
898.
Auxin polar transport is crucial in regulating plant growth and patterning. As auxin efflux carriers, the PIN FORMED (PIN) proteins are responsible for transportation of auxin out of the cell. There are eight and ten PIN members in Arabidopsis (AtPIN) and Medicago truncatula (MtPIN), respectively. Compared with MtPIN10/SMOOTH LEAF MARGIN1 (SLM1), MtPIN4 exhibits a closer relationship with AtPIN1 based phylogenetic analysis. In addition, the gene structure and distribution of transmembrane segments of MtPIN4, MtPIN5 and MtPIN10/SLM1 are similar, implying possible redundant roles among them. However, analysis using Gene Expression Atlas revealed different expression patterns among MtPIN4, MtPIN5 and MtPIN10/SLM1. Loss of function of MtPIN10/SLM1 in M. truncatula resulted in pleiotropic phenotypes in different organs, which are similar with the defects in the pin1 mutant of Arabidopsis, suggesting that the MtPIN10/SLM1 is a putative ortholog of AtPIN1. MtPIN4, MtPIN5 and MtPIN10/SLM1 may have limited redundant functions in the development of M. truncatula. The creation of double and triple mutants will help to elucidate their potential roles in auxin transport and plant development.  相似文献   
899.
Potent estrogen receptor ligands typically contain a phenolic hydrogen-bond donor. The indazole of the selective estrogen receptor degrader (SERD) ARN-810 is believed to mimic this. Disclosed herein is the discovery of ARN-810 analogs which lack this hydrogen-bond donor. These SERDs induced tumor regression in a tamoxifen-resistant breast cancer xenograft, demonstrating that the indazole NH is not necessary for robust ER-modulation and anti-tumor activity.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号