首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9352篇
  免费   738篇
  国内免费   833篇
  2024年   20篇
  2023年   119篇
  2022年   319篇
  2021年   507篇
  2020年   350篇
  2019年   404篇
  2018年   442篇
  2017年   308篇
  2016年   432篇
  2015年   611篇
  2014年   669篇
  2013年   698篇
  2012年   876篇
  2011年   724篇
  2010年   451篇
  2009年   427篇
  2008年   475篇
  2007年   441篇
  2006年   387篇
  2005年   311篇
  2004年   268篇
  2003年   225篇
  2002年   191篇
  2001年   148篇
  2000年   123篇
  1999年   142篇
  1998年   85篇
  1997年   89篇
  1996年   86篇
  1995年   76篇
  1994年   86篇
  1993年   63篇
  1992年   75篇
  1991年   71篇
  1990年   60篇
  1989年   34篇
  1988年   36篇
  1987年   26篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   12篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
The six phenolic constituents are water-soluble components extracted from the Chinese medical herb danshen, the dried roots of Salvia miltiorrhiza Bunge (Labiatae). An liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based method has been developed for the simultaneous quantification of six phenolic constituents of danshen (magnesium lithospermate B (MLB), rosmarinic acid (RA) and lithospermic acid (LA), caffeic acid (CAA), protocatechuic aldehyde (3,4-dihydroxybenzaldehyde, Pal), 3,4-dihydroxyphenyllactic acid (danshensu)) in human serum with chloramphenicol as internal standard. The serum samples were treated by special liquid-liquid extraction, and the analytes were determined using electrospray negative ionization mass spectrometry in the multiple reaction monitoring (MRM) mode, with sufficient sensitivity to allow analysis of human serum samples generated following administration of a clinically relevant dose. Good linearity over the range 8-2048 ng/mL for six phenolic constituents was observed. The intra- and inter-day precisions (CV) of analysis were <13%, and the accuracy ranged from 88 to 116%. This quantitation method was successfully applied to a pharmacokinetic study of i.v. drip infusion of Danshen injection fluid in human.  相似文献   
942.
Th1-type cytokines produced by the stimulation of Th 1-type epitopes derived from defined schistosome-associated antigens are correlated with the development of resistance to the parasite infection. Schistosoma mansoni 28 kDa glutathione-S-transferase (Sm28GST), a major detoxification enzyme, has been recognized as a vaccine candidate and a phase II clinical trial has been carried out. Sheep immunized with recombinant Schistosoma japonicum 28GST (Sj28GST) have shown immune protection against the parasite infection. In the present study, six candidate peptides (P1, P2, P3, P4, P7 and P8) from Sj28GST were predicted, using software, to be T cell epitopes, and peptides P5 and P6 were designed by extending five amino acids at the N-terminal and C-terminal of P1, respectively. The peptide 190-211 aa in Sj28GST corresponding to the Th1-type epitope (190-211 aa) identified from Sm28GST was selected and named P9. The nine candidate peptides were synthesized or produced as the fusion protein with thioredoxin in the pET32c(+)/BL21(DE3) system. Their capacity to induce a Th1-type response in vitro was measured using lymphocyte proliferation, cytokine detection experiments and flow cytometry. The results showed that P6 (73-86 aa) generated the strongest stimulation effect on T cells among the nine candidate peptides, and drove the highest level of IFN-γ, and IL-2. Therefore, P6 is a functional Thl-type T cell epitope that is different from that in Sm28GST, and will be useful for the development of effective vaccines which can trigger acquired immunity against S. japonicum. Moreover, our strategy of identifying the Thl-type epitope by a combination of software prediction and experimental confirmation provides a convenient and cost-saving alternative approach to previous methods.  相似文献   
943.
Horizontal gene transfer (HGT), a process through which genomes acquire genetic materials from distantly related organisms, is believed to be one of the major forces in prokaryotic genome evolution.However, systematic investigation is still scarce to clarify two basic issues about HGT: (1) what types of genes are transferred; and (2) what influence HGT events over the organization and evolution of biological pathways. Genome-scale investigations of these two issues will advance the systematical understanding of HGT in the context of prokaryotic genome evolution. Having investigated 82 genomes, we constructed an HGT database across broad evolutionary timescales. We identified four function categories containing a high proportion of horizontally transferred genes: cell envelope, energy metabolism, regulatory functions, and transport/binding proteins. Such biased function distribution indicates that HGT is not completely random;instead, it is under high selective pressure, required by function restraints in organisms. Furthermore, we mapped the transferred genes onto the connectivity structure map of organism-specific pathways listed in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our results suggest that recruitment of transferred genes into pathways is also selectively constrained because of the tuned interaction between original pathway members. Pathway organization structures still conserve well through evolution even with the recruitment of horizontally transferred genes. Interestingly, in pathways whose organization were significantly affected by HGT events, the operon-like arrangement of transferred genes was found to be prevalent. Such results suggest that operon plays an essential and directional role in the integration of alien genes into pathways.  相似文献   
944.
S100A8 and S100A9 in human arterial wall. Implications for atherogenesis   总被引:1,自引:0,他引:1  
Atherogenesis is a complex process involving inflammation. S100A8 and S100A9, the Ca2+-binding neutrophil cytosolic proteins, are associated with innate immunity and regulate processes leading to leukocyte adhesion and transmigration. In neutrophils and monocytes the S100A8-S100A9 complex regulates phosphorylation, NADPH-oxidase activity, and fatty acid transport. The proteins have anti-microbial properties, and S100A8 may play a role in oxidant defense in inflammation. Murine S100A8 is regulated by inflammatory mediators and recruits macrophages with a proatherogenic phenotype. S100A9 but not S100A8 was found in macrophages in ApoE-/- murine atherosclerotic lesions, whereas both proteins are expressed in human giant cell arteritis. Here we demonstrate S100A8 and S100A9 protein and mRNA in macrophages, foam cells, and neovessels in human atheroma. Monomeric and complexed forms were detected in plaque extracts. S100A9 was strongly expressed in calcifying areas and the surrounding extracellular matrix. Vascular matrix vesicles contain high levels of Ca2+-binding proteins and phospholipids that regulate calcification. Matrix vesicles characterized by electron microscopy, x-ray microanalysis, nucleoside triphosphate pyrophosphohydrolase assay and cholesterol/phospholipid analysis contained predominantly S100A9. We propose that S100A9 associated with lipid structures in matrix vesicles may influence phospholipid-Ca2+ binding properties to promote dystrophic calcification. S100A8 and S100A9 were more sensitive to hypochlorite oxidation than albumin or low density lipoprotein and immunoaffinity confirmed S100A8-S100A9 complexes; some were resistant to reduction, suggesting that hypochlorite may contribute to protein cross-linking. S100A8 and S100A9 in atherosclerotic plaque and calcifying matrix vesicles may significantly influence redox- and Ca2+-dependent processes during atherogenesis and its chronic complications, particularly dystrophic calcification.  相似文献   
945.
Wang D  Guo M  Liang Z  Fan J  Zhu Z  Zang J  Zhu Z  Li X  Teng M  Niu L  Dong Y  Liu P 《The Journal of biological chemistry》2005,280(24):22962-22967
Vacuolar protein sorting protein 29 (Vps29p), which is involved in retrograde trafficking from prevacuolar endosomes to the trans-Golgi network, performs its biological functions by participating in the formation of a "retromer complex." In human cells, this complex comprises four conserved proteins: hVps35p, hVps29p, hVps26p, and sorting nexin 1 protein (SNX1). Here, we report the crystal structure of hVps29p at 2.1 Angstroms resolution, the first three-dimensional structure of the retromer subunits. This novel structure adopts a four-layered alpha-beta-beta-alpha sandwich fold. hVps29p contains a metal-binding site that is very similar to the active sites of some proteins of the phosphodiesterase/nuclease protein family, indicating that hVps29p may carry out chemically similar functions. Structure and sequence conservation analysis suggests that hVps29p contains two protein-protein interaction sites. One site, which potentially serves as the interface between hVps29p and hVps35p, comprises 5 conserved hydrophobic and 8 hydrophilic residues. The other site is relatively more hydrophilic and may serve as a binding interface with hVps26p, SNX1, or other target proteins.  相似文献   
946.
The cyanobacterial protein MVL inhibits HIV-1 envelope-mediated cell fusion at nanomolar concentrations by binding to high mannose N-linked carbohydrate on the surface of the envelope glycoprotein gp120. Although a number of other carbohydrate-binding proteins have been shown to inhibit HIV-1 envelope-mediated cell fusion, the specificity of MVL is unique in that its minimal target comprises the Man(alpha)(1-->6)Man(beta)(1-->4)GlcNAc(beta)(1-->4)GlcNAc tetrasaccharide core of oligomannosides. We have solved the crystal structures of MVL free and bound to the pentasaccharide Man3GlcNAc2 at 1.9- and 1.8-A resolution, respectively. MVL is a homodimer stabilized by an extensive intermolecular interface between monomers. Each monomer contains two structurally homologous domains with high sequence similarity connected by a short five-amino acid residue linker. Intriguingly, a water-filled channel is observed between the two monomers. Residual dipolar coupling measurements indicate that the structure of the MVL dimer in solution is identical to that in the crystal. Man3GlcNAc2 binds to a preformed cleft at the distal end of each domain such that a total of four independent carbohydrate molecules associate with each homodimer. The binding cleft provides shape complementarity, including the presence of a deep hydrophobic hole that accommodates the N-acetyl methyl at the reducing end of the carbohydrate, and specificity arises from 7-8 intermolecular hydrogen bonds. The structures of MVL and the MVL-Man3GlcNAc2 complex further our understanding of the molecular basis of high affinity and specificity in protein-carbohydrate recognition.  相似文献   
947.
In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin colocalizes and co-migrates with mitochondria along neuronal processes. Knockdown of syntabulin expression with targeted small interfering RNA or interference with the syntabulin-kinesin-1 heavy chain interaction reduces mitochondrial density within axonal processes by impairing anterograde movement of mitochondria. These findings collectively suggest that syntabulin acts as a linker molecule that is capable of attaching mitochondrial organelles to the microtubule-based motor kinesin-1, and in turn, contributes to anterograde trafficking of mitochondria to neuronal processes.  相似文献   
948.
PF898 is a strain of Penicillium expansum optimized for the high level production of Penicillium expansum lipase (PEL). This PEL is unique compared with other lipases in several aspects, For example, the PEL shows low sequence identities (<30%) to all other known lipases, and high percentage of hydrophobic residues in the N-terminal region. The PEL was purified to homogeneity and shown to be 28 kDa by SDS-PAGE. Crystals suitable for X-ray diffraction analysis were obtained by the sitting-drop method of vapor diffusion with ammonia sulfate as the precipitating agent at 298 K. The crystals have tetragonal lattice and unit-cell parameters of a=b=88.09 A, c=126.54 A. Diffraction data were collected to a resolution of 2.08 A on an in-house rotating-anode generator.  相似文献   
949.
DNA adducts are mutagenic and clastogenic. Because of their harmful nature, lesions are recognized by many proteins involved in DNA repair. However, mounting evidence suggests that lesions also are recognized by proteins with no obvious role in repair processes. One such protein is topoisomerase II, an essential enzyme that removes knots and tangles from the DNA. Because topoisomerase II generates a protein-linked double-stranded DNA break during its catalytic cycle, it has the potential to fragment the genome. Previous studies indicate that abasic sites and other lesions that distort the double helix stimulate topoisomerase II-mediated DNA cleavage. Therefore, to further explore interactions between DNA lesions and the enzyme, the effects of exocyclic adducts on DNA cleavage mediated by human topoisomerase IIalpha were determined. When located within the four-base overhang of a topoisomerase II cleavage site (at the +2 or +3 position 3' relative to the scissile bond), 3,N(4)-ethenodeoxycytidine, 3,N(4)-etheno-2'-ribocytidine, 1,N(2)-ethenodeoxyguanosine, pyrimido[1,2-a]purin-10(3H)-one deoxyribose (M(1)dG), and 1,N(2)-propanodeoxyguanosine increased DNA scission approximately 5-17-fold. Enhanced cleavage did not result from an increased affinity of topoisomerase IIalpha for adducted DNA or a decreased rate of religation. Therefore, it is concluded that these exocyclic lesions act by accelerating the forward rate of enzyme-mediated DNA scission. Finally, treatment of cultured human cells with 2-chloroacetaldehyde, a reactive metabolite of vinyl chloride that generates etheno adducts, increased cellular levels of DNA cleavage by topoisomerase IIalpha. This finding suggests that type II topoisomerases interact with exocyclic DNA lesions in physiological systems.  相似文献   
950.
Yoon JH  Singh P  Lee DH  Qiu J  Cai S  O'Connor TR  Chen Y  Shen B  Pfeifer GP 《Biochemistry》2005,44(48):15774-15786
Nucleoside diphosphate kinases (NDKs), an evolutionarily conserved family of proteins, synthesize nucleoside triphosphates from nucleoside diphosphates and ATP. Here, we have characterized the kinase activity and DNA processing functions of eight human proteins that contain at least one domain homologous to Escherichia coli NDK. Not all human proteins with NDK-like domains exhibited NDK activity when expressed as recombinant proteins in E. coli. Human NDK1 (NM23-H1) has been reported to have 3' --> 5' exonuclease activity. In addition to human NDK1, we also find that human NDK5, NDK7, and NDK8 contain 3' --> 5' exonuclease activity. Site-directed mutagenesis, competition assays between wild-type and mutant NDK proteins, and NMR studies confirmed that the DNA-binding and 3' --> 5' exonuclease activity of human NDK1 is an intrinsic activity of the protein. Using double-stranded DNA substrates containing modified bases, human NDK1 efficiently excised nucleotides from the single-strand break produced by APE1 or Nth1. When human cells were treated with various DNA-damaging agents, human NDK1 translocated from the cytoplasm to the nucleus. These results suggest that, in addition to maintenance of nucleotide pool balance, the human NDK-like proteins may have previously unrecognized roles in DNA nucleolytic processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号