首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12769篇
  免费   1271篇
  国内免费   2029篇
  2024年   30篇
  2023年   220篇
  2022年   442篇
  2021年   873篇
  2020年   650篇
  2019年   793篇
  2018年   688篇
  2017年   497篇
  2016年   628篇
  2015年   884篇
  2014年   1083篇
  2013年   1061篇
  2012年   1244篇
  2011年   1167篇
  2010年   713篇
  2009年   622篇
  2008年   703篇
  2007年   589篇
  2006年   502篇
  2005年   456篇
  2004年   435篇
  2003年   398篇
  2002年   329篇
  2001年   202篇
  2000年   178篇
  1999年   151篇
  1998年   107篇
  1997年   73篇
  1996年   62篇
  1995年   55篇
  1994年   41篇
  1993年   44篇
  1992年   27篇
  1991年   20篇
  1990年   21篇
  1989年   22篇
  1988年   12篇
  1987年   9篇
  1986年   7篇
  1985年   10篇
  1984年   6篇
  1983年   4篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

  相似文献   
142.
Sertoli cells (SCs) are presumed to be the center of testis differentiation because they provide both structural support and biological regulation for spermatogenesis. Previous studies suggest that SCs control germ cell (GC) count and Leydig cell (LC) development in mouse testes. However, the regulatory role of SCs on peritubular myoid (PTM) cell fate in fetal testis has not been clearly reported. Here, we employed Amh‐Cre; diphtheria toxin fragment A (DTA) mouse model to selectively ablate SCs from embryonic day (E) 14.5. Results found that SC ablation in the fetal stage caused the disruption of testis cords and the massive loss of GCs. Furthermore, the number of α‐smooth muscle actin‐labeled PTM cells was gradually decreased from E14.5 and almost lost at E18.5 in SC ablation testis. Interestingly, some Ki67 and 3β‐HSD double‐positive fetal LCs could be observed in Amh‐Cre; DTA testes at E16.5 and E18.5. Consistent with this phenomenon, the messenger RNA levels of Hsd3b1, Cyp11a1, Lhr, Star and the protein levels of 3β‐HSD and P450Scc were significantly elevated by SC ablation. SC ablation appears to induce ectopic proliferation of fetal LCs although the total LC number appeared reduced. Together, these findings bring us a better understanding of SCs’ central role in fetal testis development.  相似文献   
143.
The plant defense hormone salicylic acid (SA) is perceived by two classes of receptors, NPR1 and NPR3/NPR4. They function in two parallel pathways to regulate SA-induced defense gene expression. To better understand the roles of the SA receptors in plant defense, we systematically analyzed their contributions to different aspects of Arabidopsis (Arabidopsis thaliana) plant immunity using the SA-insensitive npr1-1 npr4-4D double mutant. We found that perception of SA by NPR1 and NPR4 is required for activation of N-hydroxypipecolic acid biosynthesis, which is essential for inducing systemic acquired resistance. In addition, both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are severely compromised in the npr1-1 npr4-4D double mutant. Interestingly, the PTI and ETI attenuation in npr1-1 npr4-4D is more dramatic compared with the SA-induction deficient2-1 (sid2-1) mutant, suggesting that the perception of residual levels of SA in sid2-1 also contributes to immunity. Furthermore, NPR1 and NPR4 are involved in positive feedback amplification of SA biosynthesis and regulation of SA homeostasis through modifications including 5-hydroxylation and glycosylation. Thus, the SA receptors NPR1 and NPR4 play broad roles in plant immunity.  相似文献   
144.
Phosphodiesterase (PDE)‐mediated reduction of cyclic adenosine monophosphate (cAMP) activity can initiate germinal vesicle (GV) breakdown in mammalian oocytes. It is crucial to maintain oocytes at the GV stage for a long period to analyze meiotic resumption in vitro. Meiotic resumption can be reversibly inhibited in isolated oocytes by cAMP modulator forskolin, cAMP analog dibutyryl cAMP (dbcAMP), or PDE inhibitors, milrinone (Mil), Cilostazol (CLZ), and 3‐isobutyl‐1‐methylxanthine (IBMX). However, these chemicals negatively affect oocyte development and maturation when used independently. Here, we used ICR mice to develop a model that could maintain GV‐stage arrest with minimal toxic effects on subsequent oocyte and embryonic development. We identified optimal concentrations of forskolin, dbcAMP, Mil, CLZ, IBMX, and their combinations for inhibiting oocyte meiotic resumption. Adverse effects were assessed according to subsequent development potential, including meiotic resumption after washout, first polar body extrusion, early apoptosis, double‐strand DNA breaks, mitochondrial distribution, adenosine triphosphate levels, and embryonic development. Incubation with a combination of 50.0 μM dbcAMP and 10.0 μM IBMX efficiently inhibited meiotic resumption in GV‐stage oocytes, with low toxicity on subsequent oocyte maturation and embryonic development. This work proposes a novel method with reduced toxicity to effectively arrest and maintain mouse oocytes at the GV stage.  相似文献   
145.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM‐induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM‐induced expression of α‐smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor‐β1, interleukin‐1β, and tumor necrosis factor‐α in the lungs of BLM‐stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM‐induced murine model.  相似文献   
146.
The progression of diabetic cardiomyopathy is related to cardiomyocyte dysfunction and apoptosis. Our previous studies showed that asporin (ASPN) was significantly increased in the myocardium of db/db mice through proteomics, and grape seed procyanidin B2 (GSPB2) significantly inhibited the expression of ASPN in the heart of db/db mice. We report here that ASPN played a critical role in glycated low‐density lipoproteins (gly‐LDL) induced‐cardiomyocyte apoptosis. We found that gly‐LDL upregulated ASPN expression. ASPN increased H9C2 cardiomyocyte apoptosis with down‐regulation of Bcl‐2, upregulation of transforming growth factor‐β1, Bax, collagen III, fibronectin, and phosphorylation of smad2 and smad3. However, GSPB2 treatment reversed ASPN‐induced impairments in H9C2 cardiomyocytes. These results provide evidence for the cardioprotective action of GSPB2 against ASPN injury, and thus suggest a new target for fighting against diabetic cardiomyopathy.  相似文献   
147.
西番莲(Passiflora caerulea)是一种营养丰富的热带亚热带特色水果,采后易发生果实品质劣变现象,是制约采后西番莲果实保鲜期的重要因素。本文就西番莲采后果实褶皱及失重、果皮色泽变化、营养物质含量减少和采后病害发生等品质劣变机理,及其低温、热处理、包装、1-MCP、多糖和化学保鲜剂等西番莲果实采后保鲜技术的国内外相关研究进行综述,以期为维持西番莲果实贮藏品质、延长果实保鲜期提供指导。  相似文献   
148.
Chen  S. L.  Zhang  L. P.  Cai  X. M.  Bian  L.  Luo  Z. X.  Li  Z. Q.  Ge  L. G.  Chen  Z. M.  Xin  Z. J. 《Russian Journal of Plant Physiology》2020,67(3):572-580
Russian Journal of Plant Physiology - The tea geometrid Ectropis grisescens is an important pest of tea plant (Camellia sinensis (L.) O. Kuntze). It feeds on the new leaves and tender...  相似文献   
149.
Active fires are considered to be the key contributor to, and critical consequence of, climate change. Quantifying the occurrence frequency and regional variations in global active fires is significant for assessing carbon cycling, atmospheric chemistry, and postfire ecological effects. Multiscale variations in fire occurrence frequencies have still never been fully investigated despite free access to global active fire products. We analyzed the occurrence frequencies of Visible Infrared Imaging Radiometer Suite (VIIRS) active fires at national, pan‐regional (tropics and extratropics) to global scales and at hourly, monthly, and annual scales during 2012–2017. The results revealed that the accumulated occurrence frequencies of VIIRS global active fires were up to 12,193 × 104, yet exhibiting slight fluctuations annually and with respect to the 2014–2016 El Niño event, especially during 2015. About 35.52% of VIIRS active fires occurred from July to September, particularly in August (13.06%), and typically between 10:00 and 13:00 Greenwich Mean Time (GMT; 42.96%) and especially at 11:00 GMT (17.65%). The total counts conform to a bimodal pattern with peaks in 5°–11°N (18.01%) and 5°–18°S (32.46%), respectively, alongside a unimodal distribution in terms of longitudes between 15°E and 30°E (32.34%). Tropical annual average of active fire (1,496.81 × 104) accounted for 75.83%. Nearly 30% were counted in Brazil, the Democratic Republic of the Congo, Indonesia, and Mainland Southeast Asia (MSEA). Fires typically occurred between June (or August) and October (or November) with far below‐average rainfall in these countries, while those in MSEA primarily occurred between February and April during the dry season. They were primarily observed between 00:00 and 02:00 GMT, between 12:00 and 14:00 within each Zone Time. We believed that VIIRS global active fires products are useful for developing fire detection algorithms, discriminating occurrence types and ignition causes via correlation analyses with physical geographic elements, and assessment of their potential impacts.  相似文献   
150.
In the present study, we used microRNA (miRNA) sequencing to discover and explore the expression profiles of known and novel miRNAs in 1000 ng/ml LPS stimulated for 8 h vis-à-vis non-stimulated (i.e. control) PBMCs isolated from the blood of healthy pigs. A total of 291 known miRNAs were bio-computationally identified in porcine PBMCs, and 228 novel miRNAs (not enlisted in the swine mirBase) were identified. Among these miRNAs, ssc-miR-148a-3p, ssc-let-7g, ssc-let-7f, 3_8760, ssc-miR-26a, ssc-miR-451, ssc-miR-21, ssc-miR-30d, ssc-miR-99a and ssc-miR-103 were the top 10 most abundant miRNAs in porcine PBMCs. Through miRNA differential analysis combined with quantitative PCR, we found the expressions of ssc-miR-122, ssc-miR-129b, ssc-miR-17-5p and ssc-miR-152 were significantly changed in porcine PBMCs after LPS stimulation. Furthermore, targets prediction and function analysis indicated a significant enrichment in gene ontology functional categories related to diseases, immunity and inflammation. In conclusion, this study on profiling of miRNAs expressed in LPS-stimulated PBMCs provides an important reference point for future studies on regulatory roles of miRNAs in porcine immune system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号