首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60219篇
  免费   4617篇
  国内免费   2144篇
  2024年   77篇
  2023年   598篇
  2022年   1289篇
  2021年   2461篇
  2020年   1603篇
  2019年   2098篇
  2018年   2204篇
  2017年   1815篇
  2016年   2482篇
  2015年   3379篇
  2014年   3846篇
  2013年   4655篇
  2012年   5226篇
  2011年   4760篇
  2010年   2983篇
  2009年   2562篇
  2008年   3051篇
  2007年   2790篇
  2006年   2589篇
  2005年   2125篇
  2004年   1969篇
  2003年   1742篇
  2002年   1581篇
  2001年   1073篇
  2000年   983篇
  1999年   914篇
  1998年   579篇
  1997年   506篇
  1996年   499篇
  1995年   485篇
  1994年   385篇
  1993年   324篇
  1992年   497篇
  1991年   368篇
  1990年   312篇
  1989年   296篇
  1988年   209篇
  1987年   221篇
  1986年   182篇
  1985年   159篇
  1984年   147篇
  1983年   112篇
  1982年   102篇
  1981年   79篇
  1980年   66篇
  1979年   71篇
  1978年   50篇
  1974年   60篇
  1973年   38篇
  1969年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
912.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   
913.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
914.
Constructing highly active electrocatalysts with superior stability at low cost is a must, and vital for the large‐scale application of rechargeable Zn–air batteries. Herein, a series of bifunctional composites with excellent electrochemical activity and durability based on platinum with the perovskite Sr(Co0.8Fe0.2)0.95P0.05O3?δ (SCFP) are synthesized via a facile but effective strategy. The optimal sample Pt‐SCFP/C‐12 exhibits outstanding bifunctional activity for the oxygen reduction reaction and oxygen evolution reaction with a potential difference of 0.73 V. Remarkably, the Zn–air battery based on this catalyst shows an initial discharge and charge potential of 1.25 and 2.02 V at 5 mA cm?2, accompanied by an excellent cycling stability. X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure, and extended X‐ray absorption fine structure experiments demonstrate that the superior performance is due to the strong electronic interaction between Pt and SCFP that arises as a result of the rapid electron transfer via the Pt? O? Co bonds as well as the higher concentration of surface oxygen vacancies. Meanwhile, the spillover effect between Pt and SCFP also can increase more active sites via lowering energy barrier and change the rate‐determining step on the catalysts surface. Undoubtedly, this work provides an efficient approach for developing low‐cost and highly active catalysts for wider application of electrochemical energy devices.  相似文献   
915.
Hypholoma lateritium is an edible macrofungus with a common distribution in Europe, North America, and the Far East. The aim of this study was to investigate the potential anti‐inflammatory effects of H. lateritium extracts and its isolated steroids: fasciculic acid B, fasciculol E, fasciculol C, lanosta‐7,9(11)‐diene‐12β,21α‐epoxy‐2α,3β,24β,25‐tetraol, fasciculol F, and demethylincisterol A2. Organic (hexane, chloroform and 50 % methanol) and water extracts of H. lateritium were subjected to in vitro assays to determine pro‐inflammatory protein levels, such as cyclooxygenase‐2 (COX‐2), cytosolic prostaglandin E2 synthase (cPGES), and antioxidant nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2). Fungal extracts demonstrated significant activities on pro‐inflammatory protein levels with minor differences among the activities of the fractions of different polarities. All the compounds proved to exert notable inhibitory properties on COX‐2 and were capable to stimulate the Nrf2 pathway. Fungal extracts and the compounds exerted no cytotoxic activities on RAW 264.7 cells.  相似文献   
916.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
917.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
918.
Sequential deposition has great potential to achieve high performance in organic solar cells due to the resulting well‐controlled vertical phase separation. In this work, double bulk heterojunction organic solar cells are fabricated by sequential‐blade cast in ambient conditions. Probed by the in situ grazing incidence X‐ray diffraction and in situ UV–vis absorption measurements, the seq‐blade system exhibits a different tendency from each of the binary films during the film formation process. Due to the extensive aggregation of FOIC, the binary PBDB‐T:FOIC film displays a strong and large phase separation, resulting in low current density (Jsc) and unsatisfactory power conversion efficiency. In the seq‐blade cast system, the bottom layer PBDB‐T:IT‐M produces many crystal nuclei for the top layer PBDB‐T:FOIC, so the PBDB‐T molecules are able to crystallize easily and quickly. Balanced crystallization kinetics between polymer and small molecule and an ideal percolation network in the film are observed. In addition, the balanced crystallization kinetics are favorable toward realizing lower recombination loss through charge transport processes.  相似文献   
919.
Rechargeable aqueous Zn/MnO2 batteries are very attractive large‐scale energy storage technologies, but still suffer from limited cycle life and low capacity. Here the novel adoption of a near‐neutral acetate‐based electrolyte (pH ≈ 6) is presented to promote the two‐electron Mn4+/Mn2+ redox reaction and simultaneously enable a stable Zn anode. The acetate anion triggers a highly reversible MnO2/Mn2+ reaction, which ensures high capacity and avoids the issue of structural collapse of MnO2. Meanwhile, the anode‐friendly electrolyte enables a dendrite‐free Zn anode with outstanding stability and high plating/stripping Coulombic efficiency (99.8%). Hence, a high capacity of 556 mA h g?1, a lifetime of 4000 cycles without decay, and excellent rate capability up to 70 mA cm?2 are demonstated in this new near‐neutral aqueous Zn/MnO2 battery by simply manipulating the salt anion in the electrolyte. The acetate anion not only modifies the surface properties of MnO2 cathode but also creates a highly compatible environment for the Zn anode. This work provides a new opportunity for developing high‐performance Zn/MnO2 and other aqueous batteries based on the salt anion chemistry.  相似文献   
920.
Despite their high theoretical energy density and low cost, lithium–sulfur batteries (LSBs) suffer from poor cycle life and low energy efficiency owing to the polysulfides shuttle and the electronic insulating nature of sulfur. Conductivity and polarity are two critical parameters for the search of optimal sulfur host materials. However, their role in immobilizing polysulfides and enhancing redox kinetics for long‐life LSBs are not fully understood. This work has conducted an evaluation on the role of polarity over conductivity by using a polar but nonconductive platelet ordered mesoporous silica (pOMS) and its replica platelet ordered mesoporous carbon (pOMC), which is conductive but nonpolar. It is found that the polar pOMS/S cathode with a sulfur mass fraction of 80 wt% demonstrates outstanding long‐term cycle stability for 2000 cycles even at a high current density of 2C. Furthermore, the pOMS/S cathode with a high sulfur loading of 6.5 mg cm?2 illustrates high areal and volumetric capacities with high capacity retention. Complementary physical and electrochemical probes clearly show that surface polarity and structure are more dominant factors for sulfur utilization efficiency and long‐life, while the conductivity can be compensated by the conductive agent involved as a required electrode material during electrode preparation. The present findings shed new light on the design principles of sulfur hosts towards long‐life and highly efficient LSBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号