首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8348篇
  免费   692篇
  国内免费   972篇
  10012篇
  2024年   41篇
  2023年   193篇
  2022年   365篇
  2021年   494篇
  2020年   366篇
  2019年   500篇
  2018年   412篇
  2017年   294篇
  2016年   416篇
  2015年   559篇
  2014年   640篇
  2013年   697篇
  2012年   746篇
  2011年   640篇
  2010年   388篇
  2009年   364篇
  2008年   389篇
  2007年   342篇
  2006年   311篇
  2005年   225篇
  2004年   258篇
  2003年   227篇
  2002年   176篇
  2001年   157篇
  2000年   118篇
  1999年   99篇
  1998年   78篇
  1997年   58篇
  1996年   82篇
  1995年   68篇
  1994年   54篇
  1993年   30篇
  1992年   44篇
  1991年   33篇
  1990年   31篇
  1989年   21篇
  1988年   24篇
  1987年   17篇
  1986年   14篇
  1985年   18篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
973.
974.
975.
976.
977.
Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14‐3‐3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14‐3‐3L, Gh14‐3‐3e and Gh14‐3‐3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14‐3‐3 RNAi transgenic plants were significantly shorter than those of wild type. This ‘short fibre’ phenotype of the 14‐3‐3 RNAi cotton could be partially rescued by application of 2,4‐epibrassinolide (BL). Expression levels of the BR‐related and fibre‐related genes were altered in the Gh14‐3‐3 transgenic fibres. Furthermore, we identified Gh14‐3‐3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14‐3‐3L/e/h were required for Gh14‐3‐3‐GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14‐3‐3 proteins. Additionally, 14‐3‐3‐regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14‐3‐3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation.  相似文献   
978.
Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments protected animal models from developing chronic lung infection by P. aeruginosa. In the present study, the effects of ginseng on the formation of P. aeruginosa biofilms were further investigated in vitro and in vivo. Ginseng aqueous extract at concentrations of 0.5-2.0% did not inhibit the growth of P. aeruginosa, but significantly prevented P. aeruginosa from forming biofilm. Exposure to 0.5% ginseng aqueous extract for 24 h destroyed most 7-day-old mature biofilms formed by both mucoid and nonmucoid P. aeruginosa strains. Ginseng treatment enhanced swimming and twitching motility, but reduced swarming of P. aeruginosa at concentrations as low as 0.25%. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes, but did not affect phagocytosis of a PAO1-filM mutant. Our study suggests that ginseng treatment may help to eradicate the biofilm-associated chronic infections caused by P. aeruginosa.  相似文献   
979.
We previously showed that infection of human monocytic U937 cells with nonpathogenic Escherichia coli (E. coli) induced rapid apoptosis in a dose- and time-dependent manner. We also found that E. coli increase p38 mitogen-activated protein Kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), and decrease extracellular-Regulated Kinase1/2 (ERK1/2) phosphorylation and increase caspase-3 and -9 activity in U937 cells. The current study determines if Bcl-2, Bax, the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor kappa B (NF-κB) regulates E. coli–induced U937 cell apoptosis. Studying the underlying mechanisms we found that the E. coli-induced apoptosis in U937 cells was associated with a more prominent reduction in expression of Bcl-2, levels of P-Akt and NF-κB. Because levels of inhibition of apoptosis protein (cIAP), and X-chromosomelinked inhibitor of apoptosis protein (XIAP) are regulated by NF-κB, E. coli decreased the levels of these proteins in U937 cells through inhibition of NF-κB. Moreover, E. coli markedly elevated Bax expression and cytochrome c redistribution. LY294002, PDTC and Embelin, specific inhibitors of PI3K, NF-κB and XIAP, induced U937 cell apoptosis and the apoptosis is dependent on activity of caspase-3 and -9 in E. coli-treated U937 cells. Through using LY294002 and western blotting, we identified NF-κB was the downstream Akt target regulated by E. coli. Taken together, these results clearly indicate reduced activation of NF-κB via impaired PI3K/Akt activation could result in increased apoptosis of U937 cells infected by E. coli. Moreover, E. coli can induce apoptosis with an increased expression of Bax and a reduced expression of Bcl-2, which resulted in increased levels of cytochrome c release and increase caspase-3 and -9 in U937 cells.  相似文献   
980.
In this paper, water soluble poly(diallyldimethylammonium chloride)-graphene nanosheets (PDDA-GNs) were synthesized and characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). On the basis of PDDA-GNs, three different types of gold nanoparticles/graphene nanosheets (AuNPs/GNs) hybrid nanocomposites were obtained by one-pot synthesis, in situ reduction and adsorption methods, respectively. These nanocomposites were used as electrode materials for electrochemical determination of uric acid (UA). The results indicated adsorption to be the best method to synthesize hybrid nanocomposites from the electrochemical point of view. Given the fact positively charged PDDA-AuNPs could interact with negatively charged UA molecules, we then synthesized PDDA-protected gold nanoparticles/graphene nanosheets (PDDA-AuNPs/GNs) hybrid nanocomposites by adsorption method, for the first time. As were expected, PDDA-AuNPs/GNs gave better performance for UA than AuNPs/GNs obtained by adsorption, and the anodic peak current of UA obtained by cyclic voltammetry (CV) increased 102.1-fold in comparison to bare GCE under optimizing conditions. Differential pulse voltammetry (DPV) was used to quantitatively determine UA. The linear range of UA was from 0.5μM to 20μM and the detection limit was 0.1μM (S/N=3) with a high sensitivity of 103.08μAμM(-1)cm(-2). The assay results of urine sample provided satisfying recoveries by standard addition method. In addition, the anodic peaks of adrenaline (AD) and UA were well resolved at PDDA-AuNPs/GNs modified electrode, while they were too overlapped to separate at bare electrode, as a result of that UA was successfully detected in the presence of AD. In conclusion, rapid synthesis of PDDA-AuNPs/GNs were realized and applied as an advanced hybrid electrode material for UA determination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号