首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17245篇
  免费   1322篇
  国内免费   1369篇
  2024年   37篇
  2023年   217篇
  2022年   551篇
  2021年   974篇
  2020年   602篇
  2019年   803篇
  2018年   796篇
  2017年   593篇
  2016年   822篇
  2015年   1095篇
  2014年   1340篇
  2013年   1492篇
  2012年   1574篇
  2011年   1445篇
  2010年   865篇
  2009年   779篇
  2008年   899篇
  2007年   748篇
  2006年   612篇
  2005年   544篇
  2004年   443篇
  2003年   398篇
  2002年   287篇
  2001年   256篇
  2000年   231篇
  1999年   252篇
  1998年   176篇
  1997年   149篇
  1996年   130篇
  1995年   121篇
  1994年   112篇
  1993年   93篇
  1992年   107篇
  1991年   103篇
  1990年   55篇
  1989年   55篇
  1988年   42篇
  1987年   33篇
  1986年   23篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
941.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   
942.
In the present study, we examined whether NF-kappaB activation is required for cardiac hypertrophy in vivo. Cardiac hypertrophy in rats was induced by aortic banding for 1, 3, and 5 days and 1-6 wk, and age-matched sham-operated rats served as controls. In a separate group of rats, an IkappaB-alpha dominant negative mutant (IkappaB-alphaM), a superrepressor of NF-kappaB activation, or pyrrolidinedithiocarbamate (PDTC), an antioxidant that can inhibit NF-kappaB activation, was administered to aortic-banded rats for 3 wk. The heart weight-to-body weight ratio was significantly increased at 5 days after aortic banding, peaked at 4 wk, and remained elevated at 6 wk compared with age-matched sham controls. Atrial natriuretic peptide and brain natriuretic peptide mRNA expressions were significantly increased after 1 wk of aortic banding, reached a maximum between 2 and 3 wk, and remained increased at 6 wk compared with age-matched sham controls. NF-kappaB activity was significantly increased at 1 day, reached a peak at 3 wk, and remained elevated at 6 wk, and IKK-beta activity was significantly increased at 1 day, peaked at 5 days, and then decreased but remained elevated at 6 wk after aortic banding compared with age-matched sham controls. Inhibiting NF-kappaB activation in vivo by cardiac transfection of IkappaB-alphaM or by PDTC treatment significantly attenuated the development of cardiac hypertrophy in vivo with a concomitant decrease in NF-kappaB activity. Our results suggest that NF-kappaB activation is required for the development of cardiac hypertrophy in vivo and that NF-kappaB could be an important target for inhibiting the development of cardiac hypertrophy in vivo.  相似文献   
943.
An LQT mutant minK alters KvLQT1 trafficking   总被引:3,自引:0,他引:3  
Cardiac IKs, the slowly activated delayed-rectifier K+ current, is produced by the protein complex composed of - and -subunits: KvLQT1 and minK. Mutations of genes encoding KvLQT1 and minK are responsible for the hereditary long QT syndrome (loci LQT1 and LQT5, respectively). MinK-L51H fails to traffic to the cell surface, thereby failing to produce effective IKs. We examined the effects that minK-L51H and an endoplasmic reticulum (ER)-targeted minK (minK-ER) exerted over the electrophysiology and biosynthesis of coexpressed KvLQT1. Both minK-L51H and minK-ER were sequestered primarily in the ER as confirmed by lack of plasma membrane expression. Glycosylation and immunofluorescence patterns of minK-L51H were qualitatively different for minK-ER, suggesting differences in trafficking. Cotransfection with the minK mutants resulted in reduced surface expression of KvLQT1 as assayed by whole cell voltage clamp and immunofluorescence. MinK-L51H reduced current amplitude by 91% compared with wild-type (WT) minK/KvLQT1, and the residual current was identical to KvLQT1 without minK. The phenotype of minK-L51H on IKs was not dominant because coexpressed WT minK rescued the current and surface expression. Collectively, our data suggest that ER quality control prevents minK-L51H/KvLQT1 complexes from trafficking to the plasma membrane, resulting in decreased IKs. This is the first demonstration that a minK LQT mutation is capable of conferring trafficking defects onto its associated -subunit. potassium channel; hereditary arrhythmia; electrophysiology; protein interaction  相似文献   
944.
Gao YQ  Gao H  Zhou ZY  Lu SD  Sun FY 《生理学报》2004,56(2):153-157
实验在大鼠大脑中动脉阻塞性脑缺血(middle cerebral arterv occlusion,MCAO)模型上采用Western Blot方法检测脑缺血再灌注不同时程(6h、12h、1d、3d)脑组织中瞬时受体电位通道蛋白4(transient receptor potential channel4,TRPC4)的表达情况,并与正常对照组相比,结果显示,12 h、1 d、3 d组纹状体、海马区域TRPC4含量明显高于正常组(P<0.05)。采用免疫组织化学定位检测,显示TRPC4主要表达在神经元细胞膜上;免疫组化阳性细胞统计分析显示,在不同时程缺血组中纹状体、海马区域TRPC4的表达与正常组相比有所增加,其中纹状体、海马区缺血再灌注1 d、3 d组缺血同侧1RPC4阳性细胞升高显著(P<0.05)。脑缺血再灌注损伤后TRPC4相对含量增加,提示TRPC4可能参与脑缺血引起的急性和迟发性神经元损伤。  相似文献   
945.
946.
Malting quality has long been an active objective in barley (Hordeum vulgare L.) breeding programs. However, it is difficult for breeders to manipulate malting-quality traits because of inheritance complexity and difficulty in evaluation of these quantitative traits. Quantitative trait locus (QTL) mapping provides breeders a promising basis with which to manipulate quantitative trait genes. A malting-quality QTL complex, QTL2, was mapped previously to a 30-cM interval in the short-arm telomere region of barley chromosome 4H in a Steptoe/Morex doubled haploid population by the North American Barley Genome Project, using an interval mapping method with a relatively low-resolution genetic map. The QTL2 complex has moderate effects on several malting-quality traits, including malt extract percentage (ME), -amylase activity (AA), diastatic power (DP), malt -glucan content (BG), and seed dormancy, which makes it a promising candidate gene source in malting barley-cultivar development. Fine mapping QTL2 is desirable for precisely studying barley malting-quality trait inheritance and for efficiently manipulating QTL2 in breeding. A reciprocal-substitution mapping method was employed to fine map QTL2. Molecular marker-assisted backcrossing was used to facilitate the generation of isolines. Fourteen different types of Steptoe isolines, including regenerated Steptoe and 13 different types of Morex isolines, including regenerated Morex, were made within a 41.5-cM interval between MWG634 and BCD265B on chromosome 4H. Duplicates were identified for 12 Steptoe and 12 Morex isoline types. The isolines together with Steptoe and Morex were grown variously at three locations in 2 years for a total of five field environments. Four malting-quality traits were measured: ME, DP, AA, and BG. Few significant differences were found between duplicate isolines for these traits. A total of 15 putative QTLs were mapped; three for ME, four for DP, six for AA, and two for BG. Background genotype seemed to make a difference in expression/detection of QTLs. Of the 15 QTLs identified, ten were from the Morex and only five from the Steptoe background. By combining the results from different years, field environments, and genetic backgrounds and taking into account overlapping QTL segments, six QTLs can be conservatively estimated: two each for ME and AA and one each for DP and BG with chromosome segments ranging from 0.7 cM to 27.9 cM. A segment of 15.8 cM from the telomere (MWG634–CDO669) includes all or a portion of all QTLs identified. Further study and marker-assisted breeding should focus on this 15.8-cM chromosome region.  相似文献   
947.
A new Ru(II) complex, [Ru(bpy)(2)(dhipH3)](ClO4)(2) (in which bpy=2,2'-bipyridine, dhipH(3)=3,4-dihydroxy-imidado[4,5-f][1,10]-phenanthroline), was synthesized and characterized, and the pH effect on the emission spectra of the complex was studied. The interaction of the complex with calf thymus DNA was investigated by UV-visible and emission spectroscopy, and viscosity measurements. The results suggest that the complex acted as a sensitive luminescent pH sensor and a strong ct-DNA intercalator with an intrinsic binding constant of (4.0+/-0.7) x 10(5) M(-1) in buffered 50 mM NaCl.  相似文献   
948.
949.
A cDNA encoding sorbitol-6-phosphate dehydrogenase (S6PDH), which is a key enzyme in sorbitol biosynthesis in Rosaceae, was introduced into the Japanese persimmon (Diospyros kaki) to increase the environmental stress tolerance. Resultant transformants exhibited salt-tolerance with dwarfing phenotypes. Therefore, we studied two transgenic lines to understand the physiological mechanism of this dwarfism: lines PS1 and PS6 accumulated high and moderate levels of sorbitol, respectively. The average length of shoots was significantly shorter as compared with the wild-type in line PS1, while no such decrease was observed in line PS6. The myo-inositol and glucose 6-phosphate (G6P) contents were measured in the transgenic lines because previous work with tobacco transformed with S6PDH had suggested that growth inhibition was due to depletion of these metabolites. Although the myo-inositol content was decreased in PS1 plants, the decrease was much smaller than that observed in transgenic tobacco that accumulates sorbitol. The G6P contents were the same in PS1 plants and phenotypically normal PS6 plants. The level of indole-3-acetic acid (IAA), which affects stem elongation, in line PS1 was similar to the levels in the other lines. A decrease in gibberellin (GA) content generally induces dwarfism in plants. However, GA was not decreased in PS1 plants compared with wild-type or control plants. Therefore, we focused on sorbitol accumulation as the most remarkable feature of PS1 plants. As one possibility, the observed growth inhibition was likely caused by an osmotic imbalance between the cytosol and vacuole.  相似文献   
950.
The stability constants for the formation of nickel(II) and cobalt(II) complexes of the ligand [1,4,7]triazecan-9-ol (L) were presented. Antitumor activity of two complexes was reported. Nuclei of [NiL]-stimulated BEL-7402 cells clearly exhibited condensation and break down into chromatin clumps typical of apoptosis. Also it exhibited perturbation effects to cell cycle, and optimal induction of apoptosis was found by Flow-Cytometric analysis. But CoL complex did not exhibit introduction effects to BEL-7402 cells apoptosis; and could not perturb cell cycle. NiL and CuL complexes could cleave supercoiled DNA (pBR 322 DNA) to nicked and linear DNA, and DNA of cells treated with NiL or CuL complex was obviously damaged; while CoL complex only could cleave supercoiled DNA (pBR 322 DNA) to nicked DNA, and DNA of cells treated with CoL complex had no significant difference with control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号