首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8737篇
  免费   757篇
  国内免费   973篇
  2024年   37篇
  2023年   157篇
  2022年   289篇
  2021年   513篇
  2020年   374篇
  2019年   525篇
  2018年   450篇
  2017年   310篇
  2016年   450篇
  2015年   598篇
  2014年   669篇
  2013年   718篇
  2012年   795篇
  2011年   692篇
  2010年   425篇
  2009年   401篇
  2008年   427篇
  2007年   364篇
  2006年   341篇
  2005年   242篇
  2004年   264篇
  2003年   237篇
  2002年   198篇
  2001年   164篇
  2000年   129篇
  1999年   100篇
  1998年   77篇
  1997年   58篇
  1996年   84篇
  1995年   66篇
  1994年   52篇
  1993年   28篇
  1992年   45篇
  1991年   35篇
  1990年   31篇
  1989年   23篇
  1988年   25篇
  1987年   18篇
  1986年   12篇
  1985年   20篇
  1984年   8篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Recent experiments have shown that flux through the fusion pore is sensitive to manipulations of the side-chain size of certain residues in the syntaxin (syx) membrane anchor. These residues were proposed to line the wall of the fusion pore of Ca(2+)-triggered exocytosis. Here we continued this line of experimentation to examine possible electrostatic interactions between the pore lining residues and the neurotransmitter norepinephrine (NE). Replacing syx pore-lining residues with aspartate enhanced NE flux above that expected for the size of the aspartate side chain. In contrast, substitution with arginine reduced NE flux below that expected for the size of its side chain. Substituting aspartate and arginine into the nonpore-lining residues did not alter the fusion pore flux. Other amino acids with ionizable side chains had variable effects. These results indicate an electrostatic interaction between the pore-lining residues of syx and NE, and provide additional evidence that the syx membrane anchor is a structural component of the fusion pore.  相似文献   
952.
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.  相似文献   
953.
There are two purposes in displaying spatial genetic structure. One is that a visual representation of the variation of the genetic variable should be provided in the contour map. The other is that spatial genetic structure should be reflected by the patterns or the gradients with genetic boundaries in the map. Nevertheless, most conventional interpolation methods, such as Cavalli-Sforza's method in genography, inverse distance-weighted methods, and the Kriging technique, focus only on the first primary purpose because of their arbitrary thresholds marked on the maps. In this paper we present an application of the contour area multifractal model (CAMM) to human population genetics. The method enables the analysis of the geographic distribution of a genetic marker and provides an insight into the spatial and geometric properties of obtained patterns. Furthermore, the CAMM may overcome some of the limitations of other interpolation techniques because no arbitrary thresholds are necessary in the computation of genetic boundaries. The CAMM is built by establishing power law relationships between the area A (> or =rho) in the contour map and the value p itself after plotting these values on a log-log graph. A series of straight-line segments can be fitted to the points on the log-log graph, each representing a power law relationship between the area A (> or =rho) and the cutoff genetic variable value for rho in a particular range. These straight-line segments can yield a group of cutoff values, which can be identified as the genetic boundaries that can classify the map of genetic variable into discrete genetic zones. These genetic zones usually correspond to spatial genetic structure on the landscape. To provide a better understanding of the interest in the CAMM approach, we analyze the spatial genetic structures of three loci (ABO, HLA-A, and TPOX) in China using the CAMM. Each synthetic principal component (SPC) contour map of the three loci is created by using both Han and minority groups data together. These contour maps all present an obvious geographic diversity, which gradually increases from north to south, and show that the genetic differences among populations in different districts of the same nationality are greater than those among different nationalities of the same district. It is surprising to find that both the value of p and the fractal dimension alpha have a clear north to south gradient for each locus, and the same clear boundary between southern and northern Asians in each contour map is still seen in the zone of the Yangtze River, although substantial population migrations have occurred because of war or famine in the last 2,000 or 3,000 years. A clear genetic boundary between Europeans and Asians in each contour map is still seen in northwestern China with a small value of alpha, although the genetic gradient caused by gene flow between Europeans and Asians has tended to show expansion from northwestern China. From the three contour maps another interesting result can be found: The values of alpha north of the Yangtze River are generally less than those south of the Yangtze River. This indicates that the genetic differences among the populations north of the Yangtze River are generally smaller than those in populations south of the Yangtze River.  相似文献   
954.
Two-dimensional liquid chromatography (2D-LC) coupled on-line with electrospray ionization tandem mass spectrometry (2D-LC-ESI-MS/MS) is a new platform for analysis and identification of proteome. Peptides are separated by 2D-LC and then performed MS/MS analysis by tandem MS/MS. The MS/MS data are searched against database for protein identification. In one 2D-LC-ESI-MS/MS run, we obtained not only the structural information of peptides directly from MS/MS, but also the retention time of peptides eluted from LC. Information on the chromatographic behavior of peptides can assist protein identification in the new platform for proteomics. The retention time of the matching peptides of the identified protein was predicted by the hydrophobic contribute of each amino acid on reversed-phase liquid chromatography (RPLC). By using this strategy proteins were identified by four types of information: peptide mass fingerprinting (PMF), sequence query, and MS/MS ions searched and the predicted retention time. This additional information obtained from LC could assist protein identification with no extra experimental cost.  相似文献   
955.
In extreme alkaliphiles, Na(+)/H(+) antiporters play a central role in the Na(+) cycle that supports pH homeostasis, Na(+) resistance, solute uptake, and motility. Properties of individual antiporters have only been examined in extremely alkaliphilic soil Bacillus spp., whereas the most alkaline natural habitats usually couple high pH with high salinity. Here, studies were conducted on a Na(+)(Li(+))/H(+) antiporter, NhaD, from the soda lake haloalkaliphile Alkalimonas amylolytica. The activity profile of A. amylolytica NhaD at different pH values and Na(+) concentrations reflects its unique natural habitat. In membrane vesicles from antiporter-deficient Escherichia coli EP432 (DeltanhaA DeltanhaB), the pH optimum for NhaD-dependent Na(+)(Li(+))/H(+) antiport was at least 9.5, the highest pH that could be tested; no activity was observed at pH < or =8.5. NhaD supported low Na(+)/H(+) antiport activity at pH 9.5 that was detectable over a range of Na(+) concentrations from 10 mM to at least 800 mM, with a 600 mM optimum. Although A. amylolytica nhaD was isolated by complementing the Li(+) sensitivity of the triple mutant E. coli strain KNabc (DeltanhaA DeltanhaB DeltachaA), sustained propagation of nhaD-bearing plasmids in this strain resulted in a glycine (Gly(327))-->serine mutation in a putative cytoplasmic loop of the mutant transporter. The altered activity profile of NhaD-G327S appears to be adaptive to the E. coli setting: a much higher activity than wild-type NhaD at Na(+) concentrations up to 200 mM but lower activity at 400 to 600 mM Na(+), with a pH optimum and minimal pH for activity lower than those of wild-type NhaD.  相似文献   
956.
IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner   总被引:2,自引:0,他引:2  
In eukaryotic cells IQGAP1 binds to and alters the function of several proteins, including actin, E-cadherin, beta-catenin, Cdc42, and Rac1. Yeast IQGAP1 homologues have an important role in cytoskeletal organization, suggesting that modulation of the cytoskeleton is a fundamental role of IQGAP1. Phosphorylation is a common mechanism by which cells regulate protein function. Here we demonstrate that endogenous IQGAP1 is highly phosphorylated in MCF-7 human breast epithelial cells. Moreover, incubation of cells with phorbol 12-myristate 13-acetate (PMA) stimulated phosphate incorporation into IQGAP1. By using mass spectrometry, Ser-1443 was identified as the major site phosphorylated on IQGAP1 in intact cells treated with PMA. Ser-1441 was also phosphorylated but to a lesser extent. In vitro analysis with purified proteins documented that IQGAP1 is a substrate for protein kinase Cepsilon, which catalyzes phosphorylation on Ser-1443. Consistent with these findings, inhibition of cellular protein kinase C via bisindolymaleimide abrogated Ser-1443 phosphorylation in response to PMA. To elucidate the biological sequelae of phosphorylation, Ser-1441 and Ser-1443 were converted either to alanine, to create a nonphosphorylatable construct, or to glutamic acid and aspartic acid, respectively, to generate a phosphomimetic IQGAP1. Although overexpression of wild type IQGAP1 promoted neurite outgrowth in N1E-115 neuroblastoma cells, the nonphosphorylatable IQGAP1 S1441A/S1443A had no effect. In contrast, the S1441E/S1443D mutation markedly enhanced the ability of IQGAP1 to induce neurite outgrowth. Our data disclose that IQGAP1 is phosphorylated at multiple sites in intact cells and that phosphorylation of IQGAP1 will alter its ability to regulate the cytoskeleton of neuronal cells.  相似文献   
957.
Serum amyloid A protein (SAA) is an acute-phase reactant, known to mediate pro-inflammatory cellular responses. This study reports that CLA-1 (CD36 and LIMPII Analogous-1; human orthologue of the Scavenger Receptor Class B Type I (SR-BI)) mediates SAA uptake and downstream SAA signaling. Flow cytometry experiments revealed more than a 5-fold increase of Alexa-488 SAA uptake in HeLa cells stably transfected with CLA-1. Alexa 488-HDL uptake directly correlated with SAA uptake when determined in several CLA-1 stably transfected HeLa cell clones expressing various levels of CLA-1. SAA directly binds to CLA-1 as determined by cross-linking and colocalization of anti-CLA-1 antibody with SAA. SAA was co-internalized with transferrin to the endocytic recycling compartment pointing to a potential site of SAA metabolism. Alexa-488 SAA uptake in the CLA-1-overexpressing HeLa cells, as well as in THP-1 monocyte cell line, can be efficiently blocked by unlabeled SAA, high density lipoprotein, and other CLA-1 ligands. At the same time, markedly enhanced levels of phosphorylation of the mitogen-activated protein kinases (MAPKs), ERK1/2, and p38, were observed in cells stably transfected with CLA-1 cells following SAA stimulation when compared with mock transfected cells. The levels of the SAA-induced interleukin-8 (IL-8) secretion by CLA-1-overexpressing cells also significantly exceeded (5- to 10-fold) those detected for control cells. Synthetic amphipathic peptides possessing a structural alpha-helical motif inhibited SAA-induced activation of both MAPKs and IL-8 secretion in THP-1 cells. The results of this study demonstrate for the first time that CLA-1 functions as an endocytic SAA receptor and is involved in SAA-mediated cell signaling events associated with the immune-related and inflammatory effects of SAA.  相似文献   
958.
959.
Self-association of IQGAP1: characterization and functional sequelae   总被引:2,自引:0,他引:2  
The scaffolding protein IQGAP1 participates in numerous cellular functions by binding to target proteins such as actin, calmodulin, E-cadherin, beta-catenin, Cdc42, Rac1, and CLIP-170. IQGAP1 regulates the cytoskeleton, promotes cell motility, and modulates E-cadherin-mediated cell-cell adhesion. However, how IQGAP1 exerts its functions in vivo is still unclear. In this study we investigate the self-association of IQGAP1 and its role in IQGAP1 function. Endogenous IQGAP1 co-immunoprecipitated from MCF-7 cells with IQGAP1 tagged with enhanced green fluorescent protein, indicating that IQGAP1 self-associates in cells. In vitro assays confirmed that IQGAP1 can self-associate and that this effect is mediated by the N-terminal half of the protein. Gel filtration analysis suggested that full-length IQGAP1 exists as a combination of monomers, dimers, and larger oligomers. Analysis performed with multiple fragments of IQGAP1 narrowed the self-association region to amino acids 763-863. In support of this observation, a peptide comprising residues 763-863 disrupted self-association of full-length IQGAP1 in a dose-dependent manner. Similarly, deleting this sequence from IQGAP1 abolished binding to full-length IQGAP1. In addition, the ability of IQGAP1 to increase the amount of active Cdc42 in cells is abrogated upon removal of this region. Consistent with these findings, transfection into cells of a peptide containing the self-association domain significantly reduced the amount of active Cdc42 in cell lysates. These observations define a sequence of IQGAP1 that is necessary for its oligomerization and demonstrate that self-association is required for the normal cellular function of IQGAP1.  相似文献   
960.
Ribbon synapses in retinal sensory neurons maintain large pools of readily releasable synaptic vesicles. This allows them to release several hundreds of vesicles per second at every presynaptic release site. The molecular components that cause this high transmitter release efficiency of ribbon synapses are unknown. In the present study, we identified and characterized two novel vertebrate complexins (CPXs), CPXs III and IV, that are the only CPX isoforms present in retinal ribbon synapses. CPXs III and IV are COOH-terminally farnesylated, and, like CPXs I and II, bind to SNAP receptor complexes. CPXs III and IV can functionally replace CPXs I and II, and their COOH-terminal farnesylation regulates their synaptic targeting and modulatory function in transmitter release. The novel CPXs III and IV may contribute to the unique release efficacy of retinal sensory neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号