首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5915篇
  免费   529篇
  国内免费   468篇
  2024年   24篇
  2023年   83篇
  2022年   182篇
  2021年   321篇
  2020年   209篇
  2019年   312篇
  2018年   280篇
  2017年   174篇
  2016年   303篇
  2015年   426篇
  2014年   420篇
  2013年   455篇
  2012年   541篇
  2011年   475篇
  2010年   326篇
  2009年   299篇
  2008年   320篇
  2007年   280篇
  2006年   243篇
  2005年   173篇
  2004年   153篇
  2003年   159篇
  2002年   130篇
  2001年   97篇
  2000年   70篇
  1999年   80篇
  1998年   46篇
  1997年   39篇
  1996年   43篇
  1995年   30篇
  1994年   29篇
  1993年   32篇
  1992年   34篇
  1991年   30篇
  1990年   23篇
  1989年   13篇
  1988年   17篇
  1987年   9篇
  1986年   7篇
  1985年   13篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有6912条查询结果,搜索用时 927 毫秒
951.
The role of exogenous spermidine (Spd) in alleviating fruit granulation in the grafted seedlings of a Citrus cultivar (Huangguogan) was investigated. Granulation resulted in increased electrical conductivity, cell membrane permeability, and total pectin, soluble pectin, cellulose, and lignin contents. However, it decreased the activities of superoxide dismutase, peroxidase, and catalase, as well as the (Spd + Spm):Put ratio. The application of exogenous Spd onto Huangguogan seedlings significantly increased proline and ascorbate contents, but decreased the H2O2 and O 2 levels, which suggested that exogenous Spd provided some protection from oxidative damage. In addition, exogenous Spd decreased cell membrane permeability and MDA content, and increased the (Spd + Spm):Put ratio. The activities of antioxidant enzymes, such as catalase, peroxidase, and superoxide dismutase, were increased in Spd-treated seedlings affected by fruit granulation, resulting in a decrease in oxidative stress levels. The protective effects of Spd were reflected by a decrease in superoxide levels through osmoregulation, increased proline and ascorbate contents, and increased antioxidant activities. Our observations reveal the importance of exogenous Spd in alleviating citrus fruit granulation.  相似文献   
952.
The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson’s trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.  相似文献   
953.
SH3 and multiple ankyrin (ANK) repeat domain 3 (SHANK3) is a synaptic scaffolding protein enriched in the postsynaptic density of excitatory synapses. SHANK3 plays an important role in the formation and maturation of excitatory synapses. In the brain, SHANK3 directly or indirectly interacts with various synaptic molecules including N-methyl-D-aspartate receptor, the metabotropic glutamate receptor (mGluR), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. Previous studies have shown that Autism spectrum disorder is a result of mutations of the main SHANK3 isoforms, which may be due to deficit in excitatory synaptic transmission and plasticity. Recently, accumulating evidence has demonstrated that overexpression of SHANK3 could induce seizures in vivo. However, little is known about the role of SHANK3 in refractory temporal lobe epilepsy (TLE). Therefore, we investigated the expression pattern of SHANK3 in patients with intractable temporal lobe epilepsy and in pilocarpine-induced models of epilepsy. Immunofluorescence, immunohistochemistry, and western blot analysis were used to locate and determine the expression of SHANK3 in the temporal neocortex of patients with epilepsy, and in the hippocampus and temporal lobe cortex of rats in a pilocarpine-induced epilepsy model. Double-labeled immunofluorescence showed that SHANK3 was mainly expressed in neurons. Western blot analysis confirmed that SHANK3 expression was increased in the neocortex of TLE patients and rats. These results indicate that SHANK3 participates in the pathology of epilepsy.  相似文献   
954.
Bisphenol A (BPA) can accumulate in the human body and promote the progression of various cancers. However, its role in the development of neuroblastoma (NB) is largely unknown. Our present study revealed that nanomolar concentrations of BPA can significantly increase the proliferation, migration and invasion of NB SH-SY5Y and SiMa cells, further evidenced by the upregulation of human proliferating cell nuclear antigen, Bcl-2, vimentin and fibronectin. Real-time PCR and ELISA results suggested that nanomolar BPA can increase the expression of interleukin-6 (IL-6), but had no effect on the expression of IL-2, IL-8, IL-10 or IL-12. The neutralization antibody of IL-6 can abolish BPA-induced proliferation and invasion of NB cells. The inhibitor of NF-κB (BAY 11-7082), but not PD98059 (PD, ERK1/2 inhibitor) or LY294002 (LY, PI3 K/Akt inhibitor), attenuated BPA-induced IL-6 expression and cell proliferation and invasion. In addition, BPA treatment also rapidly increased the phosphorylation of p65 since treatment for 5 min. Collectively, our data revealed that nanomolar BPA can trigger the malignancy of NB cells via activation of NF-κB/IL-6 signals, suggesting that more attention should be paid to the potential health risks of daily BPA intake.  相似文献   
955.
956.

Introduction

ClpXP protease is an important proteolytic system in Salmonella enterica serovar typhimurium (S. typhimurium). Inactivation of ClpXP by deletion of clpP resulted in overproduction of RpoS and a growth defect phenotype. Only one report has indicated that deleting rpoS can restore the growth of a S. typhimurium clpP mutant to the wild-type level. Whether overproduction of RpoS is responsible for the growth deficiency resulting from clpP disruption and how ClpXP affects the cell metabolism of S. typhimurium remain to be elucidated.

Objectives

The aim of this study is to investigate the effect of ClpXP on cell metabolism of S. typhimurium and explore the possible co-effect of RpoS associated with ClpXP in cell metabolism.

Method

We constructed a clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) using a two-step phage transduction technique. We then compared the metabolite fingerprints of Salmonella rpoS deletion mutant TT-14 (ΔrpoS TT-1), clpP deletion mutant TT-16 (ΔclpP TT-1), and clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) with those of the wild-type strain TT-1 by using gas chromatography coupled with mass spectrometry (GC–MS).

Results

Deletion of rpoS recovered only a part of the growth of Salmonella clpP mutant. Further metabolome analysis indicated that clpP disruption changed the levels of 16 extra- and 19 intracellular substances, while the extracellular concentrations of 4 compounds (serine, l-5-oxoproline, l-glutamic acid, and l-tryptophan) and intracellular concentrations of 10 compounds (l-isoleucine, glycine, serine, l-methionine, l-phenylalanine, malic acid, citric acid, urea, putrescine, and 6-hydroxypurine) returned to their wild-type levels when rpoS was also deleted.

Conclusion

ClpXP affects the cell metabolism of S. typhimurium partially in an RpoS-dependent manner.
  相似文献   
957.
Cobalt selenide has been proposed to be an effective low‐cost electrocatalyst toward the oxygen evolution reaction (OER) due to its well‐suited electronic configuration. However, pure cobalt selenide has by far still exhibited catalytic activity far below what is expected. Herein, this paper for the first time reports the synthesis of new monoclinic Co3Se4 thin nanowires on cobalt foam (CF) via a facile one‐pot hydrothermal process using selenourea. When used to catalyze the OER in basic solution, the conditioned monolithic self‐supported Co3Se4/CF electrode shows an exceptionally high catalytic current of 397 mA cm?2 at a low overpotential (η) of 320 mV, a small Tafel slope of 44 mV dec?1, a turnover frequency of 6.44 × 10?2 s?1 at η = 320 mV, and excellent electrocatalytic stability at various current densities. Furthermore, an electrolyzer is assembled using two symmetrical Co3Se4/CF electrodes as anode and cathode, which can deliver 10 and 20 mA cm?2 at low cell voltages of 1.59 and 1.63 V, respectively. More significantly, the electrolyzer can operate at 10 mA cm?2 over 3500 h and at 100 mA cm?2 for at least 2000 h without noticeable degradation, showing extraordinary operational stability.  相似文献   
958.
Realizing energy harvesting from water flow using triboelectric generators (TEGs) based on our daily wearable fabric or textile has practical significance. Challenges remain on methods to fabricate conformable TEGs that can be easily incorporated into waterproof textile, or directly harvest energy from water using hydrophobic textile. Herein, a wearable all‐fabric‐based TEG for water energy harvesting, with additional self‐cleaning and antifouling properties is reported for the first time. Hydrophobic cellulose oleoyl ester nanoparticles (HCOENPs) are prepared from microcrystalline cellulose, as a low‐cost and nontoxic coating material to achieve superhydrophobic coating on fabrics, including cotton, silk, flax, polyethylene terephthalate (PET), polyamide (nylon), and polyurethane. The resultant PET fabric‐based water‐TEG can generate an instantaneous output power density of 0.14 W m?2 at a load resistance of 100 MΩ. An all‐fabric‐based dual‐mode TEG is further realized to harvest both the electrostatic energy and mechanical energy of water, achieving the maximum instantaneous output power density of 0.30 W m?2. The HCOENPs‐coated fabric provides excellent breathability, washability, and environmentally friendly fabric‐based TEGs, making it a promising wearable self‐powered system.  相似文献   
959.
CuO and Cu2O are non‐noble transition metal oxide supercapacitive materials with high theoretical specific capacitances above 1800 F g?1. In this work, by adjusting organic additives of a colloidal system, Cu, Cu2O, and CuO are grown in situ on nickel foam. CuO exhibits a specific capacitance of 1355 F g?1 at 2 A g?1 in 3 m KOH, a value well above those of Cu and Cu2O (<500 F g?1), and is superior to other known CuO electrodes. The CuO electrode exhibits 70% of its initial capacity, and the Columbic efficiency remains ≈100% after 7000 cycles at 4 A g?1. Cu2O exhibits the worst electrochemical performance, mainly due to the inactive barrier layer forming on the surface. This work provides an efficient synthetic platform for both comparable supercapacitive studies and cost‐effective electrochemical energy storage applications.  相似文献   
960.
Selenium–sulfur solid solutions are a class of potential cathode materials for high energy batteries, since they have higher theoretical capacities than selenium and improved conductivity over sulfur. Here, a high‐performance cathode material by confining 70 wt% of SeS2 in a highly ordered mesoporous carbon (CMK‐3) framework with a polydopamine (PDA) protection sheath for novel Li–Se/S batteries is reported. With a relatively high SeS2 mass loading of 2.6–3 mg cm?2, the CMK‐3/SeS2@PDA cathode exhibits a high capacity of >1200 mA h g?1 at 0.2 A g?1, excellent C‐rate capability of 535 mA h g?1 at 5 A g?1, and prolonged life over 500 cycles. Benefitting from the unique advantages of SeS2 and the rationally designed host framework, this new cathode material demonstrates a feasible strategy to overcome the bottlenecks of current Li–S systems for high energy density rechargeable batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号