首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9568篇
  免费   770篇
  国内免费   739篇
  11077篇
  2024年   30篇
  2023年   126篇
  2022年   294篇
  2021年   507篇
  2020年   350篇
  2019年   400篇
  2018年   445篇
  2017年   282篇
  2016年   409篇
  2015年   600篇
  2014年   667篇
  2013年   672篇
  2012年   865篇
  2011年   796篇
  2010年   454篇
  2009年   390篇
  2008年   476篇
  2007年   380篇
  2006年   361篇
  2005年   305篇
  2004年   242篇
  2003年   186篇
  2002年   182篇
  2001年   180篇
  2000年   156篇
  1999年   177篇
  1998年   90篇
  1997年   95篇
  1996年   74篇
  1995年   92篇
  1994年   89篇
  1993年   60篇
  1992年   92篇
  1991年   78篇
  1990年   69篇
  1989年   45篇
  1988年   57篇
  1987年   36篇
  1986年   42篇
  1985年   53篇
  1984年   26篇
  1983年   18篇
  1982年   21篇
  1981年   11篇
  1979年   11篇
  1978年   14篇
  1977年   10篇
  1974年   11篇
  1969年   5篇
  1968年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
32.
33.
用0℃冷冻处理2—3 h,一些PcaSE-1和BEL-7404细胞的角蛋白纤维能部分地转化成凝聚颗粒,但在HeLa 和CNE 细胞中不发生这种角蛋白纤维结构转化。当回复温度到37℃15—30 min 时,PcaSE-1 和BEL-7404细胞的这种结构转化能快速回复。相反,在HeLa 和CNE 细胞有丝分裂时,角蛋白纤维能转化成凝聚颗粒,但PcaSE-1细胞和BEL-7404细胞的角蛋白纤维网始终维持纤维状态,且围绕纺锤体分布。上述结果表明:两类上皮细胞角蛋白纤维结构的转化似由不同因子所引起。我们的结果还指出:(1)单用秋水仙素或用秋水仙素和细胞松弛素D 合并处理PcaSE-1细胞不能引起角蛋白纤维凝聚。但经秋水仙素解聚微管后,会增强细胞对冷处理的凝聚反应。(2)冷处理时角蛋白纤维凝聚的形成与细胞是否具有两套不同的中间纤维无关。(3)予先用TritonX-100抽提细胞,角蛋白纤维在冷冻后不能转化成凝聚颗粒。(4)冷冻处理引起的结构转化可能是某些上皮细胞系的角蛋白纤维的一种特殊性质。  相似文献   
34.
35.
36.
根据黄土高原3个剖面的孢粉资料及测年数据,恢复了本区180-73万年期间的植被面貌。在此基础上,结合中国和全球其它地区的孢粉、构造、地层、水系演化和火山活动等特征。将此期间植被、气候和环境的演化划分为3个主旋回,6个主要演化阶段,10个亚阶段和5个事件。初步认识到,该时间段的气候环境演化有较大波动,且这些变化不限于局部地区,而是区域性的,是多种因素(内外动力)作用的结果,且有规律可循。  相似文献   
37.
贵州盘县大洞更新世灵长类化石   总被引:2,自引:1,他引:1  
本文记述贵州盘县大洞中-晚更新世洞穴堆积中的猴类化石,数量不多,被归入短尾猴(Macacaarctoides),熊猴(M.cf.assamensis)和疣猴亚科(Colobinae)本研究为南方洞穴堆积单个灵长类牙齿的鉴定积累一些资料,同时也扩大了贵州省猴类化石的分布。  相似文献   
38.
虎耳草科落新妇族的研究   总被引:2,自引:0,他引:2  
本文探讨了落新妇族Trib.Astilbeae的系统发育和地理分布。依据进化论、被子植物性状演化总趋势和外类群比较,确认了该族及其外类群Penthorum的重要性状(染色体基数,花粉纹饰,胎座式,心皮、雄蕊、花瓣和萼片数目,萼片脉型,叶型)的极性。采用徐克学(1989)最大同步法做了分支分析,推导出了该族的系统树图。系统树图表明:Rodgersia和Astilboides是一单系类群,而Astilbe为其姊妹群; Rodgersia较Astilbe进化,Astilboides则居二者之间;Penthorum是落新妇族的姊妹群,且与之有共同祖先。迄今为止,已知落新妇族共有24种和13变种(原变种除外)。分布于Takhtajan(1986)的东亚区、大西洋-北美区、伊朗-土兰区和马来西亚区。在东亚区,日本、朝鲜和中国(吉林-辽宁东部)有3属、17种和变种,占该族种与变种总数的45.9%,其中,含有不同演化水平的类群和该族原始种有Astilbe platyphylla,A.simplicifolia和Rodgersia podophylla,此地区是该族的起源中心、现代分布中心和分化中心。 横断山地区有2属、11种和变种,占29.7%,是另一现代分布中心。本族较进化的种Astilbe biternata、A. indica、A.khasiana和Rodgersia nepalensis等,均出现于远离起源中心地区。据此推断,本族植物的散布路线可能是从日本、朝鲜和中国(吉林-辽宁东部)向北通过东西伯利亚和白令陆桥,继而向东南进入北美东南部;向南经中国南部至菲律宾和爪哇,向西南越秦岭-大巴山山地、横断山,入喜马拉雅。落新妇属 Astilbe和鬼灯檠属Rodgersia均分布于亚洲大陆和日本岛屿,而日本于晚第三纪以来,即与亚洲大陆分离,故落新妇属和鬼灯檠属的形成,当在日本与亚洲大陆分离之前。据此推知,落新妇族的起源时间可能在早第三纪,或可追溯至晚白垩纪。  相似文献   
39.
40.
J. Hladík  P. Pančoška  D. Sofrová 《BBA》1982,681(2):263-272
Thylakoid membranes of the cyanobacterium Plectonema boryanum solubilized with Triton X-100 can be resolved into three fractions of pigment-protein complexes (Hladík, J. and Sofrová, D. (1981) Photosynthetica 15, 490–503). Fraction I contained relatively the highest amount of carotenoids as well as monomeric forms of chlorophyll a, Fractions II and III contained chlorophyll-protein complexes with a characteristic exciton-split circular dichroism in the red region. It has been shown that fraction III is an oligomeric form of the chlorophyll-protein complex of fraction II. Circular dichroism spectra indicate that, different from fraction II, fraction III contains specifically oriented and space-fixed molecules of carotenoids. Thermal dissociation of fracion III to fraction II is accompanied by disappearance of the positive circular dichroism effect of carotenoids in the 500–550 nm region, thus causing deorganization of the carotenoids, proceeding in parallel to the geometrical rearrangement of chlorophyll molecules. Extraction of the carotenoids of fraction III with heptane is acompanied by dissociation of fraction III. We assume that the observed effects are due to binding of the two pigments to the protein component of the complex and that carotenoids can mediate a part of the interactions which stabilize the structure of pigment-protein complexes. Thus, besides the light-harvesting and protective functions, carotenoids can also play a structural role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号