首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19425篇
  免费   1432篇
  国内免费   1564篇
  2024年   48篇
  2023年   330篇
  2022年   664篇
  2021年   1094篇
  2020年   677篇
  2019年   914篇
  2018年   808篇
  2017年   569篇
  2016年   880篇
  2015年   1162篇
  2014年   1473篇
  2013年   1540篇
  2012年   1838篇
  2011年   1594篇
  2010年   1029篇
  2009年   883篇
  2008年   965篇
  2007年   822篇
  2006年   677篇
  2005年   595篇
  2004年   493篇
  2003年   444篇
  2002年   390篇
  2001年   295篇
  2000年   298篇
  1999年   306篇
  1998年   197篇
  1997年   199篇
  1996年   191篇
  1995年   151篇
  1994年   137篇
  1993年   96篇
  1992年   142篇
  1991年   115篇
  1990年   102篇
  1989年   77篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   42篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Intracellular delivery of functional proteins is of great interest for basic biological research as well as for clinical applications. Transfection is the most commonly used method, however, it is not applicable to large-scale manipulation and inefficient in important cell types implicated in biomedical applications, such as epithelial, immune and pluripotent stem cells. In this study, we explored a bacterial type III secretion system (Bac-T3SS)-mediated proteofection method to overcome these limitations. An attenuated Pseudomonas aeruginosa vector was constructed, which has features of low toxicity, high T3SS activity, and self-limiting growth. Compared to the method of transfection, the Bac-T3SS showed significantly higher efficiencies of Cre recombinase translocation and target site recombination for hard-to-transfect human cell lines. Furthermore, through the delivery of β-lactamase in live animals, we demonstrated the feasibility and biosafety of in vivo application of the Bac-T3SS. This study provided an efficient and low-cost proteofection strategy for laboratory use as well as for application in large-scale cell manipulations.  相似文献   
992.
The rare ginsenosides are recognized as the functionalized molecules after the oral administration of Panax ginseng and its products. The sources of rare ginsenosides are extremely limited because of low ginsenoside contents in wild plants, hindering their application in functional foods and drugs. We developed an effective combinatorial biotechnology approach including tissue culture, immobilization, and hydrolyzation methods. Rh2 and nine other rare ginsenosides were produced by methyl jasmonate-induced culture of adventitious roots in a 10 L bioreactor associated with enzymatic hydrolysis using six β-glycosidases and their combination with yields ranging from 5.54 to 32.66 mg L−1. The yield of Rh2 was furthermore increased by 7% by using immobilized BglPm and Bgp1 in optimized pH and temperature conditions, with the highest yield reaching 51.17 mg L−1 (17.06% of protopanaxadiol-type ginsenosides mixture). Our combinatorial biotechnology method provides a highly efficient approach to acquiring diverse rare ginsenosides, replacing direct extraction from Panax plants, and can also be used to supplement yeast cell factories.  相似文献   
993.
We report on the development of a new model of alveolar air–tissue interface on a chip. The model consists of an array of suspended hexagonal monolayers of gelatin nanofibers supported by microframes and a microfluidic device for the patch integration. The suspended monolayers are deformed to a central displacement of 40–80 µm at the air–liquid interface by application of air pressure in the range of 200–1,000 Pa. With respect to the diameter of the monolayers, that is, 500 µm, this displacement corresponds to a linear strain of 2–10% in agreement with the physiological strain range in the lung alveoli. The culture of A549 cells on the monolayers for an incubation time of 1–3 days showed viability in the model. We exerted a periodic strain of 5% at a frequency of 0.2 Hz for 1 hr to the cells. We found that the cells were strongly coupled to the nanofibers, but the strain reduced the coupling and induced remodeling of the actin cytoskeleton, which led to a better tissue formation. Our model can serve as a versatile tool in lung investigations such as in inhalation toxicology and therapy.  相似文献   
994.
Accumulated evidence has shown that pre-eclampsia (PE) is related to both maternal and utero-placental antiangiogenesis and inflammation. Remarkably, an elevated cell-free fetal DNA (cffDNA) level has been found in maternal circulation; however, it remains unclear whether this DNA can induce activation of cytosolic DNA sensor signaling pathways and lead to the development of PE. In this study, we found that trophoblast cells constitutively expressed the cytosolic DNA sensors, absent in melanoma 2 (AIM2) and interferon-inducible protein 16 (IFI16). The cffDNA and pro-inflammatory and antiangiogenic factors were present at higher concentrations in PE compared with the control group and correlated with the severity of PE. DNA stimulation significantly increased the AIM2 and IFI16 levels, consistent with the elevated AIM2 and IFI16 expression in women with PE, and elicited increased production of AIM2-mediated interleukin IL-8 (IL-8), IL-6 and CC chemokine ligand 2 (CCL2) and IFI16-mediated sEndoglin, sFlt-1 and CXCL10. Furthermore, enhancement of the inflammatory response was found to be induced by DNA exposure, but DNA exposure did not induce PE-like symptoms in pregnant mice. It is possible that elevated cffDNA could reflect the degree of placental damage and trigger cytosolic DNA sensor activation, which disrupts the immunity balance and, consequently, contributes to inflammatory and antiangiogenic responses. In conclusion, the results of this study suggest that circulating cffDNA levels are increased in preeclamptic women and act through AIM2 and IFI16 activation to promote the production of pro-inflammatory and antiangiogenic factors, which correlate with the severity of the disease, and may offer insights into the etiology and pathogenesis of PE.  相似文献   
995.
996.
Avian embryos are easily influenced by their environment during incubation. Previous studies have demonstrated that incubation temperature changes could influence muscle development and body weight, which subsequently determine the adult phenotype. The objective of this study was to investigate whether the development of immune organs in ducklings could be influenced by thermal manipulation during the middle stage of incubation. To evaluate this hypothesis, a control group was incubated under a normal temperature from E11 to E24, while the incubation temperature of the experimental group was increased by 1 °C. Our results indicated that slight changes in the incubation temperature significantly repressed the bursa of Fabricius index of the duck embryo on E25 (F1, 58=122.51, P<0.0001) and significantly repressed the spleen index of neonatal ducklings (F1, 58=74.38, P<0.0001). At 0 day posthatching (dph) and 14 dph, ducklings hatched from eggs incubated under the higher temperature had a lower percentage of globulin than the control group (F1, 10=19.97, P=0.0111; F1, 10=9.8, P=0.0352). The IFN-γ concentration of ducklings at 14 dph displayed the same trend (F1, 10=284.49, P<0.0001). These results suggested that thermal manipulation during the middle stage of incubation had a repressive effect on the development of immune organs and reduced the concentrations of serum globulin and IFN-γ. These results demonstrated that the subtle alteration of incubation temperature may weaken ducklings' immunity.  相似文献   
997.
998.
Genetic factors play important roles in the development of tuberculosis (TB). SP110 is a promising candidate target for controlling TB infections. However, several studies associating SP110 single nucleotide polymorphisms (SNPs) with TB have yielded conflicting results. This may be partly resolved by studying other genes associated with SP110, such as MYBBP1A and RELA. Here, we genotyped 6 SP110 SNPs, 8 MYBBP1A SNPs and 5 RELA SNPs in 702 Chinese pulmonary TB patients and 425 healthy subjects using MassARRAY and SNaPshot methods. Using SNP-based analysis with Bonferroni correction, rs3809849 in MYBBP1A [Pcorrected (cor) = 0.0038] and rs9061 in SP110 (Pcor = 0.019) were found to be significantly associated with TB. Furthermore, meta-analysis of rs9061 in East Asian populations showed that the rs9061 T allele conferred significant risk for TB [P = 0.002, pooled odds ratio (OR), 1.24, 95 % confidence interval (CI) = 1.08–1.43]. The MYBBP1A GTCTTGGG haplotype and haplotypes CGACCG/TGATTG within SP110 were found to be markedly and significantly associated with TB (P = 2.00E?06, 5.00E?6 and 2.59E?4, respectively). Gene-based analysis also demonstrated that SP110 and MYBBP1A were each associated with TB (Pcor = 0.011 and 0.035, respectively). The logistic regression analysis results supported interactions between SP110 and MYBBP1A, indicating that subjects carrying a GC/CC genotype in MYBBP1A and CC genotype in SP110 possessed the high risk of developing TB (P = 1.74E?12). Our study suggests that a combination of SP110 and MYBBP1A gene polymorphisms may serve as a novel marker for identifying the risk of developing TB in the Chinese Han population.  相似文献   
999.
We assessed the performance of the new Life Technologies Proton sequencer by comparing whole-exome sequence data in a Centre d’Etude du Polymorphisme Humain trio (family 1463) to the Illumina HiSeq instrument. To simulate a typical user’s results, we utilized the standard capture, alignment and variant calling methods specific to each platform. We restricted data analysis to include the capture region common to both methods. The Proton produced high quality data at a comparable average depth and read length, and the Ion Reporter variant caller identified 96 % of single nucleotide polymorphisms (SNPs) detected by the HiSeq and GATK pipeline. However, only 40 % of small insertion and deletion variants (indels) were identified by both methods. Usage of the trio structure and segregation of platform-specific alleles supported this result. Further comparison of the trio data with Complete Genomics sequence data and Illumina SNP microarray genotypes documented high concordance and accurate SNP genotyping of both Proton and Illumina platforms. However, our study underscored the problem of accurate detection of indels for both the Proton and HiSeq platforms.  相似文献   
1000.
Given that cyclooxygenase-2 (COX-2) plays a crucial role during cerebral ischemia and Apobec-1 is a critical regulator of COX-2 mRNA stabilization in gastrointestinal settings, the correlation of COX-2 and Apobec-1 was investigated in neurogenic cells and rat model of cerebral ischemia. After neurogenic SH-SY5Y, NG108-15 and PC12 cells were exposed to oxygen-glucose deprivation, cell viability, LDH leakage and Apobec-1 expression were determined. The effect of Apobec-1 overexpression on injury severity of oxygen-glucose deprivation, COX-2 expression, C-to-U editing of COX-2 mRNA were measured in vitro. Then the correlation of Apobec-1 level and injury severity was analyzed in cells with oxygen-glucose deprivation and in rats with middle cerebral artery occlusion. Apobec-1 expression was elevated along with upregulation of COX-2 and injury severity of oxygen-glucose deprivation in the three cell lines. Apobec-1 overexpression aggravated injury of oxygen-glucose deprivation in vitro and could be correlated to injury severity in vivo. Meanwhile, Apobec-1 increased COX-2 expression and COX-2 mRNA stabilization in neurogenic cells, and failed to catalyze C-to-U editing of COX-2 mRNA. Apobec-1 could upregulate COX-2 expression in neurogenic cells by stabilizing COX-2 mRNA, and might aggravate injury of oxygen-glucose deprivation in neurogenic cells as well as in rats with cerebral ischemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号