首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19411篇
  免费   1432篇
  国内免费   1578篇
  22421篇
  2024年   48篇
  2023年   330篇
  2022年   664篇
  2021年   1094篇
  2020年   677篇
  2019年   914篇
  2018年   808篇
  2017年   569篇
  2016年   880篇
  2015年   1162篇
  2014年   1473篇
  2013年   1540篇
  2012年   1838篇
  2011年   1594篇
  2010年   1029篇
  2009年   883篇
  2008年   965篇
  2007年   822篇
  2006年   677篇
  2005年   595篇
  2004年   493篇
  2003年   444篇
  2002年   390篇
  2001年   295篇
  2000年   298篇
  1999年   306篇
  1998年   197篇
  1997年   199篇
  1996年   191篇
  1995年   151篇
  1994年   137篇
  1993年   96篇
  1992年   142篇
  1991年   115篇
  1990年   102篇
  1989年   77篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   42篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
92.
93.
94.
Serous ovarian cancer (SEOC) is the deadliest gynecologic malignancy. MicroRNAs (miRNAs) are a class of small noncoding RNAs which regulate gene expression and protein translation. MiRNAs are also encoded by viruses with the intent of regulating their own genes and those of the infected cells. This is the first study assessing viral miRNAs in SEOC. MiRNAs sequencing data from 487 SEOC patients were downloaded from the TCGA website and analyzed through in-house sequencing pipeline. To cross-validate TCGA analysis, we measured the expression of miR-H25 by quantitative immunofluorescence in an additional cohort of 161 SEOC patients. Gene, miRNA expression, and cytotoxicity assay were performed on multiple ovarian cancer cell lines transfected with miR-H25 and miR-BART7. Outcome analysis was performed using multivariate Cox and Kaplan-Meier method. Viral miRNAs are more expressed in SEOC than in normal tissues. Moreover, Herpetic viral miRNAs (miR-BART7 from EBV and miR-H25 from HSV-2) are significant and predictive biomarkers of outcome in multivariate Cox analysis. MiR-BART7 correlates with resistance to first line chemotherapy and early death, whereas miR-H25 appears to impart a protective effect and long term survival. Integrated analysis of gene and viral miRNAs expression suggests that miR-BART7 induces directly cisplatin-resistance, while miR-H25 alters RNA processing and affects the expression of noxious human miRNAs such as miR-143. This is the first investigation linking viral miRNA expression to ovarian cancer outcome. Viral miRNAs can be useful to develop biomarkers for early diagnosis and as a potential therapeutic tool to reduce SEOC lethality.  相似文献   
95.

Background

In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells.

Method

Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry.

Results

The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 105 and (0.85 ± 0.11) × 105, respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC.

Conclusion

Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-11-43) contains supplementary material, which is available to authorized users.  相似文献   
96.
A challenge associated with drug design is the development of selective inhibitors of proteases (serine or cysteine) that exhibit the same primary substrate specificity, that is, show a preference for the same P(1) residue. While these proteases have similar active sites, nevertheless there are subtle differences in their S and S' subsites which can be exploited. We describe herein for the first time the use of functionalized sulfonamides as a design and diversity element which, when coupled to the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold yields potent, time-dependent inhibitors of the serine proteases human leukocyte elastase (HLE), proteinase 3 (PR 3) and cathepsin G(Cat G). Our preliminary findings suggest that (a) appending to the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold recognition and diversity elements that interact with both the S and S' subsites of a target protease may result in optimal enzyme selectivity and potency and, (b) functionalized sulfonamides constitute a powerful design and diversity element with low intrinsic chemical reactivity and potentially wide applicability.  相似文献   
97.
Structure, sequence, and promoter analysis of human disabled-2 gene (DAB2)   总被引:12,自引:0,他引:12  
Sheng Z  He J  Tuppen JA  Sun W  Fazili Z  Smith ER  Dong FB  Xu XX 《Genomics》2000,70(3):381-386
  相似文献   
98.
We investigated the mechanisms underlying damage to rat small intestine in heat- and shake-induced stress. Eighteen Sprague-Dawley rats were randomly divided into a control group and a 3-day stressed group treated 2 h daily for 3 days on a rotary platform at 35°C and 60 r/min. Hematoxylin and eosin-stained paraffin sections of the jejunum following stress revealed shedding of the villus tip epithelial cells and lamina propria exposure. Apoptosis increased at the villus tip and extended to the basement membrane. Photomicrographs revealed that the microvilli were shorter and sparser; the nuclear envelope invaginated and gaps in the karyolemma increased; and the endoplasmic reticulum (ER) swelled significantly. Gene microarray analysis assessed 93 differentially expressed genes associated with apoptosis, ER stress, and autophagy. Relevant genes were compiled from the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Forty-one genes were involved in the regulation of apoptosis, fifteen were related to autophagy, and eleven responded to ER stress. According to KEGG, the apoptosis pathways, mitogen-activated protein kinase(MAPK) signaling pathway, the mammalian target of rapamycin (mTOR) signaling pathway, and regulation of autophagy were involved. Caspase3 (Casp3), caspase12 (Casp12), and microtubule-associate proteins 1 light chain 3(LC3) increased significantly at the villus tip while mTOR decreased; phosphorylated-AKT (P-AKT) decreased. ER stress was involved and induced autophagy and apoptosis in rat intestinal damage following heat and shake stress. Bioinformatic analysis will help determine the underlying mechanisms in stress-induced damage in the small intestine.  相似文献   
99.
100.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most devastating diseases in common wheat (Triticum aestivum L.) worldwide. The objectives of this study were to map a stripe rust resistance gene in Chinese wheat cultivar Chuanmai 42 using molecular markers and to investigate its allelism with Yr24 and Yr26. A total of 787 F2 plants and 186 F3 lines derived from a cross between resistant cultivar Chuanmai 42 and susceptible line Taichung 29 were used for resistance gene tagging. Also 197 F2 plants from the cross Chuanmai 42×Yr24/3*Avocet S and 726 F2 plants from Chuanmai 42×Yr26/3*Avocet S were employed for allelic test of the resistance genes. In all, 819 pairs of wheat SSR primers were used to test the two parents, as well as resistant and susceptible bulks. Subsequently, nine polymorphic markers were employed for genotyping the F2 and F3 populations. Results indicated that the stripe rust resistance in Chuanmai 42 was conferred by a single dominant gene, temporarily designated YrCH42, located close to the centromere of chromosome 1B and flanked by nine SSR markers Xwmc626, Xgwm273, Xgwm11, Xgwm18, Xbarc137, Xbarc187, Xgwm498, Xbarc240 and Xwmc216. The resistance gene was closely linked to Xgwm498 and Xbarc187 with genetic distances of 1.6 and 2.3 cM, respectively. The seedling tests with 26 PST isolates and allelic tests indicated that YrCH42, Yr24 and Yr26 are likely to be the same gene.G.Q. Li and Z.F. Li contributed equally to the work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号