首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2127篇
  免费   175篇
  国内免费   199篇
  2501篇
  2024年   4篇
  2023年   31篇
  2022年   70篇
  2021年   105篇
  2020年   69篇
  2019年   109篇
  2018年   103篇
  2017年   72篇
  2016年   89篇
  2015年   141篇
  2014年   145篇
  2013年   136篇
  2012年   202篇
  2011年   167篇
  2010年   98篇
  2009年   80篇
  2008年   107篇
  2007年   87篇
  2006年   75篇
  2005年   73篇
  2004年   39篇
  2003年   48篇
  2002年   54篇
  2001年   35篇
  2000年   32篇
  1999年   49篇
  1998年   19篇
  1997年   31篇
  1996年   20篇
  1995年   29篇
  1994年   30篇
  1993年   16篇
  1992年   35篇
  1991年   22篇
  1990年   19篇
  1989年   14篇
  1988年   11篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   11篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
排序方式: 共有2501条查询结果,搜索用时 15 毫秒
71.
72.
Although primary androgen deprivation therapy resulted in tumour regression, unfortunately, majority of prostate cancer progress to a lethal castration-resistant prostate cancer, finally die to metastasis. The mutual feedback between AKT and AR pathways plays a vital role in the progression and metastasis of prostate cancer. Therefore, the treatment of a single factor will eventually inevitably lead to failure. Therefore, better understanding of the molecular mechanisms underlying metastasis is critical to the development of new and more effective therapeutic agents. In this study, we created prostate cancer CWR22rv1 cells with the double knockout of Akt1 and Akt2 genes through CRISPR/Cas9 method to investigate the effect of Akt in metastasis of prostate cancer. It was found that knockout of Akt1/2 resulted in markedly reduced metastasis in vitro and in vivo, and appeared to interfere AR nuclear translocation through regulating downstream regulatory factor, FOXO proteins. It suggests that some downstream regulatory factors in the AKT and AR interaction network play a vital role in prostate cancer metastasis and are potential targeting molecules for prostate cancer metastasis treatment.  相似文献   
73.
74.
Multi-species compartment epidemic models, such as the multi-species susceptible–infectious–recovered (SIR) model, are extensions of the classic SIR models, which are used to explore the transient dynamics of pathogens that infect multiple hosts in a large population. In this article, we propose a dynamical Bayesian hierarchical SIR (HSIR) model, to capture the stochastic or random nature of an epidemic process in a multi-species SIR (with recovered becoming susceptible again) dynamical setting, under hidden mass balance constraints. We call this a Bayesian hierarchical multi-species SIR (MSIRB) model. Different from a classic multi-species SIR model (which we call MSIRC), our approach imposes mass balance on the underlying true counts rather than, improperly, on the noisy observations. Moreover, the MSIRB model can capture the discrete nature of, as well as uncertainties in, the epidemic process.  相似文献   
75.
Parameters of the length-weight relationship (LWR) were estimated for four fish species [Beaufortia szechuanensis (Fang, 1930), Claea dabryi (Sauvage, 1874), Percocypris pingi (Tchang, 1930), and Yunnanilus sichuanensis Ding, 1995] from the Yalong River. Samples were collected seasonally from June 2018 to July 2019, using various fishing gears [set nets (mesh: 1.5 × 2.0 cm), hook, drift gill nets (three mesh sizes: 1.0; 2.0; 3.0 cm) and electro fishing]. Two new maximum standard length were recorded for C. dabryi and P. pingi.  相似文献   
76.
77.
78.
Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H+-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1–17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2. Moreover, this peptide strongly inhibits GEF activity via direct interaction with the Sec7 domain of cytohesin-2. The structure of a2N(1–17) and its amino acids Phe5, Met10, and Gln14 involved in interaction with Sec7 domain were determined by NMR spectroscopy analysis. In silico docking experiments revealed that part of the V-ATPase formed by its a2N(1–17) epitope competes with the switch 2 region of Arf1 and Arf6 for binding to the Sec7 domain of cytohesin-2. The amino acid sequence alignment and GEF activity studies also uncovered the conserved character of signaling between all four (a1–a4) a-subunit isoforms of mammalian V-ATPase and cytohesin-2. Moreover, the conserved character of this phenomenon was also confirmed in experiments showing binding of mammalian cytohesin-2 to the intact yeast V-ATPase holo-complex. Thus, here we have uncovered an evolutionarily conserved function of the V-ATPase as a novel cytohesin-signaling receptor.  相似文献   
79.
80.
This minireview mainly aims at the study of S-adenosyl-l-methionine (SAM) production by microbial fermentation. A brief introduction of the biological role and application of SAM was presented. In general, SAM production can be improved by breeding of the producing strain through the conventional mutation or genetic engineering approach in the molecular or cellular scale, by optimization of culture conditions in the cellular scale or bioreactor engineering scale, or by multiscale approach. The productivity of SAM fermentation has been improved greatly through the efforts of many researchers using the methods previously mentioned. The SAM-producing strains used extensively are Pichia pastoris and Saccharomyces cerevisiae. The effect of SAM on antibiotic production was also exemplified. The skill and scheme beneficial to the improvement of SAM production involves the enhancement of SAM synthetase (methionine adenosyltransferase) activity and selection of engineered constitutive promoters with appropriate strength; seeking for and eliminating the rate-limiting factors in SAM synthesis, namely, knocking off the genes that transform SAM and l-methionine (L-Met) to cysteine; release the feedback inhibition of SAM to methylenetetrahydrofolate reductase; blocking the transsulfuration pathway by interfering the responsible enzymes; enhancing ATP level through pulsed feeding of glycerol; and optimizing the L-Met feeding strategy. Precise control of gene expression and quantitative assessment of physiological parameters in engineered P. pastoris were highlighted. Finally, a discussion of the prospect of SAM production was presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号