The increasing emergence of drug-resistant tuberculosis (TB) poses a serious threat to the control of this disease. It is in urgent need to develop new TB drugs. Tryptophan biosynthetic pathway plays an important role in the growth and replication of Mycobacterium tuberculosis (Mtb). The β-subunit of tryptophan synthase (TrpB) catalyzes the last step of the tryptophan biosynthetic pathway, and it might be a potential target for TB drug design. In this study, we overexpressed, purified, and characterized the putative TrpB-encoding gene Rv1612 in Mtb H37Rv. Results showed that Mtb His-TrpB optimal enzymatic activity is at pH 7.8 with 0.15 M Na^+ or 0.18 M Mg^2+ at 37℃. Structure analysis indicated that Mtb TrpB exhibited a typical β/α barrel structure. The amino acid residues believed to interact with the enzyme cofactor pyridoxal-5'-phosphate were predicted by homology modeling and structure alignment. The role of these residues in catalytic activity of the Mtb His-TrpB was confirmed by site-directed mutagenesis. These results provided reassuring structural information for drug design based on TrpB. 相似文献
Recent multi-centre trials showed that dihydroartemisinin-piperaquine (DP) was as efficacious and safe as artemether-lumefantrine (AL) for treatment of young children with uncomplicated P. falciparum malaria across diverse transmission settings in Africa. Longitudinal follow-up of patients in these trials supported previous findings that DP had a longer post-treatment prophylactic effect than AL, reducing the risk of reinfection and conferring additional health benefits to patients, particularly in areas with moderate to high malaria transmission.
Methods
We developed a Markov model to assess the cost-effectiveness of DP versus AL for first-line treatment of uncomplicated malaria in young children from the provider perspective, taking into consideration the post-treatment prophylactic effects of the drugs as reported by a recent multi-centre trial in Africa and using the maximum manufacturer drug prices for artemisinin-based combination therapies set by the Global Fund in 2013. We estimated the price per course of treatment threshold above which DP would cease to be a cost-saving alternative to AL as a first-line antimalarial drug.
Results
First-line treatment with DP compared to AL averted 0.03 DALYs (95% CI: 0.006–0.07) and 0.001 deaths (95% CI: 0.00–0.002) and saved $0.96 (95% CI: 0.33–2.46) per child over one year. The results of the threshold analysis showed that DP remained cost-saving over AL for any DP cost below $1.23 per course of treatment.
Conclusions
DP is superior to AL from both the clinical and economic perspectives for treatment of uncomplicated P. falciparum malaria in young children. A paediatric dispersible formulation of DP is under development and should facilitate a targeted deployment of this antimalarial drug. The use of DP as first-line antimalarial drug in paediatric malaria patients in moderate to high transmission areas of Africa merits serious consideration by health policymakers. 相似文献
We have reported on the synthesis of ordered hexagonal Au nanoparticle (NPs) arrays by anodic alumina oxide templates (AAO)-assisted thermal treatment. This simple process has led to the formation of an ordered hexagonal array of Au NPs on the surface of AAO. SERS properties of the ordered hexagonal Au NPs could be obtained by varying the size of Au NPs. Compared with the Au thin film on AAO, the SERS intensity of rhodamine adsorbed on the ordered hexagonal Au NPs was about 1000 times stronger. And the hexagonal Au NPs array films have had stronger Raman-enhanced signal compared to the disorder Au NPs films. Simulations according to the three-dimensional finite-difference time domain (3D-FDTD) have displayed that these electric field enhancements of the ordered hexagonal Au NPs are strongly dependent on the gap distance. Plasmonic ordered hexagonal Au NPs could provide us new platforms to realize novel optoelectronic devices.
The Epic® system, a high-throughput label-free optical biosensor system, is applied for the biochemical interrogation of phosphor-specific interactions of the 14-3-3 protein and its substrates. It has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. A perspective of biochemical applications for diagnostics and biomarker discovery, as well as cell-based applications for endogenous receptors and viral infection characterization, are also provided. 相似文献