首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14207篇
  免费   1369篇
  国内免费   1504篇
  2024年   37篇
  2023年   212篇
  2022年   459篇
  2021年   781篇
  2020年   601篇
  2019年   661篇
  2018年   648篇
  2017年   477篇
  2016年   620篇
  2015年   932篇
  2014年   1079篇
  2013年   1089篇
  2012年   1276篇
  2011年   1084篇
  2010年   731篇
  2009年   608篇
  2008年   757篇
  2007年   663篇
  2006年   562篇
  2005年   464篇
  2004年   468篇
  2003年   455篇
  2002年   436篇
  2001年   364篇
  2000年   262篇
  1999年   252篇
  1998年   144篇
  1997年   109篇
  1996年   105篇
  1995年   92篇
  1994年   116篇
  1993年   61篇
  1992年   62篇
  1991年   81篇
  1990年   54篇
  1989年   58篇
  1988年   33篇
  1987年   27篇
  1986年   34篇
  1985年   30篇
  1984年   17篇
  1983年   14篇
  1982年   13篇
  1981年   8篇
  1980年   6篇
  1978年   4篇
  1973年   4篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
992.
Mesenchymal stem cells (MSCs) are non-hematopoietic cells with multi-lineage potential, which makes them attractive targets for regenerative medicine applications. Efficient gene transfer into MSCs is essential for basic research in developmental biology and for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors (CARs), but not into MSCs, which lack CAR expression. To overcome this problem, an Adv coated with cationic polymer polyethyleneimine (PEI) was developed. In this study, we demonstrated that PEI coating with an optimal ratio can enhance adenoviral transduction of MSCs without cytotoxicity. We also investigated the physicochemical properties and internalization mechanisms of the PEI-coated Adv. These results could help to evaluate the potentiality of the PEI-coated Adv as a prototype vector for efficient and safe transduction into MSCs.  相似文献   
993.
Autophagy is primarily considered a non‐selective degradation process induced by starvation. Nutrient‐independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin‐binding deacetylase, histone deacetylase‐6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin‐dependent, actin‐remodelling machinery, which in turn assembles an F‐actin network that stimulates autophagosome–lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build‐up, and neurodegeneration. Remarkably, HDAC6 and F‐actin assembly are completely dispensable for starvation‐induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome–lysosome fusion.  相似文献   
994.
Adaptor proteins respond to stimuli and recruit downstream complexes using interactions conferred by associated protein domains and linear motifs. The ShcA adaptor contains two phosphotyrosine recognition modules responsible for binding activated receptors, resulting in the subsequent recruitment of Grb2 and activation of Ras/MAPK. However, there is evidence that Grb2‐independent signalling from ShcA has an important role in development. Using mass spectrometry, we identified the multidomain scaffold IQGAP1 as a ShcA‐interacting protein. IQGAP1 and ShcA co‐precipitate and are co‐recruited to membrane ruffles induced by activated receptors of the ErbB family, and a reduction in ShcA protein levels inhibits the formation of lamellipodia. We used NMR to characterize a direct, non‐canonical ShcA PTB domain interaction with a helical fragment from the IQGAP1 N‐terminal region that is pTyr‐independent. This interaction is mutually exclusive with binding to a more conventional PTB domain peptide ligand from PTP–PEST. ShcA‐mediated recruitment of IQGAP1 may have an important role in cytoskeletal reorganization downstream of activated receptors at the cell surface.  相似文献   
995.
Aims: To investigate the intracellular ethanol accumulation in yeast cells by using laser tweezers Raman spectroscopy (LTRS). Methods and Results: Ethanol accumulation in individual yeast cells during aerobic fermentation triggered by excess glucose was studied using LTRS. Its amount was obtained by comparing intracellular and extracellular ethanol concentrations during initial process of ethanol production. We found that (i) yeasts start to produce ethanol within 3 min after triggering aerobic fermentation, (ii) average ratio of intracellular to extracellular ethanol is 1·54 ± 0·17 during the initial 3 h after addition of 10% (w/v) excess glucose and (iii) the accumulated intracellular ethanol is released when aerobic fermentation is stimulated with decreasing glucose concentration. Conclusions: Intracellular ethanol accumulation occurs in initial stage of a rapid aerobic fermentation and high glucose concentration may attribute to this accumulation process. Significance and Impact of the Study: This work demonstrates LTRS is a real‐time, reagent‐free, in situ technique and a powerful tool to study kinetic process of ethanol fermentation. This work also provides further information on the intracellular ethanol accumulation in yeast cells.  相似文献   
996.
Free fatty acids (FFA)-induced proliferation and apoptosis was studied in human umbilical vein endothelial cells (HUVECs). A recombinant adenovirus containing a RNAi cassette targeting the GSK-3β gene was produced and its silencing effect on GSK-3β gene was detected by Western blot analysis and immunohistochemistry assay in HUVECs. The effect of the RNAi on the protein level of β-catenin was explored by transfecting the RNAi adenovirus to inhibit the expression of GSK-3β protein. The subsequent effect on the Wnt/GSK-3β/β-catenin signal pathway and on proliferation and apoptosis of HUVECs cultured with FFAs, was analyzed by BrdU assay, Annexin V-FITC/PI Apoptosis Detection Kit, and 4′,6-diamidino-2- phenylindole(DAPI) to explore the possible connection between the signaling pathway and FFA-induced proliferation and apoptosis. The Western blot results showed that the expression of GSK-3β protein in HUVECs could be inhibited efficiently by the RNAi adenovirus, and that the protein level of β-catenin was increased by RNAi adenovirus transfection. The results of the BrdU assay suggested that knockdown of GSK-3β with the RNAi adenovirus may stimulate the proliferation of HUVECs. Apoptosis was observed in HUVECs exposed to FFAs (0.75 mmol/L) for 72 h, and this effect could be partly reversed when interfering with the RNAi adenovirus. It may be concluded that the RNAi adenovirus specific to GSK-3β may partly protect HUVECs from apoptosis induced by FFAs, probably through the up-regulation of the Wnt/β-catenin signal pathway.  相似文献   
997.
Endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) may play an important role in attenuating cardiac remodeling and apoptosis after myocardial infarction. However, the anti-inflammation effects of eNOS in infarcted myocardium and the role of MAPK signaling in eNOS/NO mediated cardiac remodeling have not yet been elucidated. Adenovirus carrying Human eNOS gene was delivered locally into heart 4 days prior to induction of myocardial infarction (MI) by left anterior descending coronary artery ligation. Monocyte/macrophage infiltration was detected by ED-1 immunohistochemistry. Western blot was employed to examine the activation of MAPK. eNOS gene transfer significantly reduced myocardial infarct size and improved cardiac contractility as well as left ventricle (LV) diastolic function at 7 days after MI. In addition, eNOS gene transfer decreased monocyte/macrophage infiltration in the infarct region of the heart. Phosphorylation of MAPK after MI were also dramatically reduced by eNOS gene transfer. All the protective effects of eNOS were blocked by N(ω)-nitro-l-arginine methyl ester (L-NAME) administration, indicating a NO-mediated event. These results demonstrate that the eNOS/NO system provides cardiac protection after MI injury through inhibition of inflammation and suppression of MAPK signaling.  相似文献   
998.
In this paper, we study the existence and nonexistence of traveling wave solutions for the one-dimensional microscopic and macroscopic chemotaxis models. The microscopic model is based on the velocity jump process of Othmer et al. (SIAM J Appl Math 57:1044–1081, 1997). The macroscopic model, which can be shown to be the parabolic limit of the microscopic model, is the classical Keller–Segel model, (Keller and Segel in J Theor Biol 30:225–234; 377–380, 1971). In both models, the chemosensitivity function is given by the derivative of a potential function, Φ(v), which must be unbounded below at some point for the existence of traveling wave solutions. Thus, we consider two examples: F(v) = lnv{\Phi(v) = \ln v} and F(v) = ln[v/(1-v)]{\Phi(v) = \ln[v/(1-v)]}. The mathematical problem reduces to proving the existence or nonexistence of solutions to a nonlinear boundary value problem with variable coefficient on \mathbb R{\mathbb R}. The main purpose of this paper is to identify the relationships between the two models through their traveling waves, from which we can observe how information are lost, retained, or created during the transition from the microscopic model to the macroscopic model. Moreover, the underlying biological implications of our results are discussed.  相似文献   
999.
In our screening program for new agrochemicals from local wild plants, essential oil of Artemisia vestita Wall (Asteraceae) was found to possess strong insecticidal activity against maize weevil, Sitophilus zeamais Motsch. Essential oil of aerial parts of A. vestita was obtained from hydrodistillation and was investigated by GC and GC–MS. The main components of essential oil were grandisol (40.29%), 1,8-cineol (14.88%) and camphor (11.37%). The essential oil of A. vestita possessed strong fumigant toxicity against S. zeamais adults with a LC50 value of 13.42 mg/L air. The essential oil of A. vestita also showed contact toxicity against S. zeamais adults with a LD50 value of 50.62 mg/adult.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号