首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20706篇
  免费   1768篇
  国内免费   1863篇
  24337篇
  2024年   55篇
  2023年   285篇
  2022年   691篇
  2021年   1158篇
  2020年   761篇
  2019年   968篇
  2018年   953篇
  2017年   741篇
  2016年   982篇
  2015年   1294篇
  2014年   1623篇
  2013年   1719篇
  2012年   1898篇
  2011年   1683篇
  2010年   1031篇
  2009年   928篇
  2008年   1073篇
  2007年   914篇
  2006年   719篇
  2005年   641篇
  2004年   618篇
  2003年   563篇
  2002年   520篇
  2001年   444篇
  2000年   334篇
  1999年   313篇
  1998年   212篇
  1997年   161篇
  1996年   149篇
  1995年   128篇
  1994年   125篇
  1993年   101篇
  1992年   112篇
  1991年   114篇
  1990年   65篇
  1989年   66篇
  1988年   42篇
  1987年   33篇
  1986年   22篇
  1985年   32篇
  1984年   25篇
  1983年   17篇
  1982年   10篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Presently, commercialization of sodium‐ion batteries (SIBs) is still hindered by the relatively poor energy‐storage performance. In addition, low‐temperature (low‐T) Na storage is another principal concern for the wide application of SIBs. Unfortunately, the Na‐transfer kinetics is extremely sluggish at low‐T, as a result, there are few reports on low‐T SIBs. Here, an advanced low‐T sodium‐ion full battery (SIFB) assembled by an anode of 3D Se/graphene composite and a high‐voltage cathode (Na3V2(PO4)2O2F) is developed, exhibiting ultralong lifespan (over even 15 000 cycles, the capacity retention is still up to 86.3% at 1 A g?1), outstanding low‐T energy storage performance (e.g., all values of capacity retention are >75% after 1000 cycles at temperatures from 25 to ?25 °C at 0.4 A g?1), and high‐energy/power properties. Such ultralong lifespan signifies that the developed sodium‐ion full battery can be used for longer than 60 years, if batteries charge/discharge once a day and 80% capacity retention is the standard of battery life. As a result, the present study not only promotes the practicability and commercialization of SIBs but also points out the new developing directions of next‐generation energy storage for wider range applications.  相似文献   
82.
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management.  相似文献   
83.
84.
Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of both insulin and leptin signals. For years, inhibiting of PTP1B has been considered to be a potential therapeutics for treating Type 2 diabetes and obesity. Recently, we recognized lithocholic acid (LCA) as a natural inhibitor against PTP1B (IC50 = 12.74 μM) by a vertical screen for the first time. Further SAR research was carried out by synthesizing and evaluating a series of compounds bearing two methyls at C-4 position and a fused heterocycle to ring A. Among them, compound 14b achieved a PTP1B inhibitory activity about eightfold than LCA and a 14-fold selectivity over the homogenous enzyme TCPTP.  相似文献   
85.
Multidrug resistance protein 1 (MRP1) is capable of actively transporting a wide range of conjugated and unconjugated organic anions. The protein can also transport additional conjugated and unconjugated compounds in a GSH- or S-methyl GSH-stimulated manner. How MRP1 binds and transports such structurally diverse substrates is not known. We have used [(3)H]leukotriene C(4) (LTC(4)), a high affinity glutathione-conjugated physiological substrate, to photolabel intact MRP1, as well as fragments of the protein expressed in insect cells. These studies revealed that: (i) LTC(4) labels sites in the NH(2)- and COOH-proximal halves of MRP1, (ii) labeling of the NH(2)-half of MRP1 is localized to a region encompassing membrane-spanning domain (MSD) 2 and nucleotide binding domain (NBD) 1, (iii) labeling of this region is dependent on the presence of all or part of the cytoplasmic loop (CL3) linking MSD1 and MSD2, but not on the presence of MSD1, (iv) labeling of the NH(2)-proximal site is preferentially inhibited by S-methyl GSH, (v) labeling of the COOH-proximal half of the protein occurs in a region encompassing transmembrane helices 14-17 and appears not to require NBD2 or the cytoplasmic COOH-terminal region of the protein, (vi) labeling of intact MRP1 by LTC(4) is strongly attenuated in the presence of ATP and vanadate, and this decrease in labeling is attributable to a marked reduction in LTC(4) binding to the NH(2)-proximal site, and (vii) the attenuation of LTC(4) binding to the NH(2)-proximal site is a consequence of ATP hydrolysis and trapping of Vi-ADP exclusively at NBD2. These data suggest that MRP1-mediated transport involves a conformational change, driven by ATP hydrolysis at NBD2, that alters the affinity with which LTC(4) binds to one of two sites composed, at least in part, of elements in the NH(2)-proximal half of the protein.  相似文献   
86.
The switching on-and-off of I-kappaB kinase (IKK) and NF-kappaB occurs rapidly after signaling. How activated IKK becomes down-regulated is not well understood. Here we show that following tumor necrosis factor-alpha stimulation, protein phosphatase 2A (PP2A) association with IKK is increased. A heptad repeat in IKKgamma, helix 2 (HLX2), mediates PP2A recruitment. Two other heptad repeats downstream of HLX2, termed coiled-coil region 2 (CCR2) and leucine zipper (LZ), bind HLX2 and negatively regulate HLX2 interaction with PP2A. HTLV-1 transactivator Tax also binds HLX2, and this interaction is enhanced by CCR2 but reduced by LZ. In the presence of Tax, PP2A-IKKgamma binding is greatly strengthened. Interestingly, peptides spanning CCR2 and/or LZ disrupt IKKgamma-Tax and IKKgamma-PP2A interactions and potently inhibit NF-kappaB activation by Tax and tumor necrosis factor-alpha. We propose that when IKK is resting, HLX2, CCR2, and LZ form a helical bundle in which HLX2 is sequestered. The HLX2-CCR2-LZ bundle becomes unfolded by signal-induced modifications of IKKgamma or after Tax binding. In this conformation, IKK becomes activated. IKKgamma then recruits PP2A via the exposed HLX2 domain for rapid down-regulation of IKK. Tax-PP2A interaction, however, renders PP2A inactive, thus maintaining Tax-PP2A-IKK in an active state. Finally, CCR2 and LZ possibly inhibit IKK activation by stabilizing the HLX2-CCR2-LZ bundle.  相似文献   
87.
88.
89.
90.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号