首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52922篇
  免费   4679篇
  国内免费   3249篇
  2024年   77篇
  2023年   530篇
  2022年   1095篇
  2021年   2298篇
  2020年   1508篇
  2019年   1904篇
  2018年   1891篇
  2017年   1429篇
  2016年   2013篇
  2015年   3017篇
  2014年   3540篇
  2013年   3958篇
  2012年   4526篇
  2011年   4151篇
  2010年   2583篇
  2009年   2172篇
  2008年   2705篇
  2007年   2433篇
  2006年   2185篇
  2005年   1887篇
  2004年   1726篇
  2003年   1566篇
  2002年   1471篇
  2001年   1274篇
  2000年   1059篇
  1999年   1011篇
  1998年   531篇
  1997年   510篇
  1996年   488篇
  1995年   460篇
  1994年   418篇
  1993年   307篇
  1992年   522篇
  1991年   439篇
  1990年   360篇
  1989年   368篇
  1988年   278篇
  1987年   235篇
  1986年   203篇
  1985年   236篇
  1984年   153篇
  1983年   129篇
  1982年   109篇
  1981年   114篇
  1979年   117篇
  1978年   91篇
  1977年   71篇
  1975年   88篇
  1974年   89篇
  1973年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
Recent animal studies have suggested that there exists an activated subpopulation of circulating granulocytes which plays an important part in microvascular sequestration and tissue injury during shock and ischemia. In this respect, spontaneous granulocyte activation in form of pseudopod formation, a manifestation of actin polymerization, is a high risk for microvascular entrapment. The present investigation was carried out to determine if there is a significant difference in pseudopod formation in vitro between granulocytes obtained from healthy volunteers without symptoms and patients with acute cardiovascular illnesses. Blood samples from 25 healthy volunteers, 12 patients with acute myocardial infarction (AMI) and 12 patients with acute cerebral infarction (ACI) to determine spontaneous pseudopod formation in granulocytes with a high resolution light microscope over a period of several hours. The results revealed that the mean percentage of cells with pseudopod formation in the control group was below 10% in the first 3 hours, and increased to about 50% at 12 hours. In AMI patients, the level of activation within the first hour was not significantly different from the controls, but it rose rapidly to 90% in 4 to 5 hours. Patients with cerebral infarction, however, showed no significant difference from the control group. When the granulocytes of healthy subjects were incubated in plasma of AMI, the cells were activated similar to AMI granulocytes in their own plasma. When AMI plasma was serially diluted with Ringer's solution, the activation curve fell successively. These results indicate that AMI patients' blood contains plasma factor(s) which can activate granulocytes at a more rapid rate than controls.  相似文献   
892.
Microcrystalline cellulose was chlorinated with N-chlorosuccinimide-triphenylphosphine under homogeneous conditions in LiCl-N,N-dimethylacetamide. At the early stage of the reaction only replacement of the 6-hydroxyl groups with chlorine was observed, and 3-hydroxyl groups were replaced at a lower rate with Walden inversion. The effects of reaction conditions on the extent of chlorination were studied in detail. More than two equivalents of chlorination reagents per glucose residue were necessary to attain a high degree of substitution (ds) by chlorine, and the maximum ds attained was 1.86. Chlorinated disaccharides were found in the hydrolyzates of chlorodeoxycelluloses hydrolyzed under mild conditions, and their structures were studied by mass spectrometry.  相似文献   
893.
894.
The characterization of mineral-associated polyanions from the unicellular alga Pleurochrysis carterae is described. This species is useful for the study of mineralization, because it produces calcified scales known as coccoliths in homogeneous cell culture. Three acidic polysaccharides (PS-1, PS-2, and PS-3) were extracted from the coccoliths with EDTA and were separated and purified by differential precipitation with magnesium ions and chromatography on DEAE-cellulose. PS-1 and PS-3 are predominantly polymers of galacturonic acid containing lesser amounts of other monosaccharides. PS-2 has an unusual structure. Chemical, enzymatic, and two-dimensional NMR analyses demonstrate that the repeating unit of PS-2 is [----4)D-glucuronate(beta 1----2)meso-tartrate(3----1)glyoxylate(1-]n. Thus PS-2 has a high density of negatively charged groups available for calcium ion binding, similar to the phosphoprotein polyanions of other species. Polysaccharides containing tartrate and/or glyoxylate have not been previously described; these residues may be introduced into PS-2 by a postpolymerization process involving oxidative cleavage of glucuronate or mannuronate residues.  相似文献   
895.
Site-directed mutagenesis was used to examine the catalytic importance of 2 histidine and 4 arginine residues in Escherichia coli periplasmic acid phosphatase (EcAP). The residues that were selected as targets for mutagenesis were those that were also conserved in a number of high molecular weight acid phosphatases from eukaryotic organisms, including human prostatic and lysosomal acid phosphatases. Both wild type EcAP and mutant proteins were overproduced in E. coli using an expression system based on the T7 RNA polymerase promoter, and the proteins were purified to homogeneity. Examination of the purified mutant proteins by circular dichroism and proton NMR spectroscopy revealed no significant conformational changes. The replacement of Arg16 and His17 residues that were localized in a conserved N-terminal RHGXRXP motif resulted in the complete elimination of EcAP enzymatic activity. Critical roles for Arg20, Arg92, and His303 were also established because the corresponding mutant proteins exhibited residual activities that were not higher than 0.4% of that of wild type enzyme. In contrast, the replacement of Arg63 did not cause a significant alteration of the kinetic parameters. The results are in agreement with a previously postulated distant relationship between acid phosphatases, phosphoglycerate mutases, and fructose-2,6-bisphosphatase. These and earlier results are also consistent with the conclusion that 2 histidine residues participate in the catalytic mechanism of acid phosphatases, with His17 playing the role of a nucleophilic acceptor of the phospho group, whereas His303 may act as a proton donor to the alcohol or phenol.  相似文献   
896.
A novel human tissue kallikrein inhibitor designated as kallistatin has been purified from plasma to apparent homogeneity by polyethylene glycol fractionation and successive chromatography on heparin-Agarose, DEAE-Sepharose, hydroxylapatite, and phenyl-Superose columns. A purification factor of 4350 was achieved with a yield of approximately 1.35 mg per liter of plasma. The purified inhibitor migrates as a single band with an apparent molecular mass of 58 kDa when analyzed on SDS-polyacrylamide gel electrophoresis under reducing conditions. It is an acidic protein with pI values ranging from 4.6 to 5.2. No immunological cross-reactivity was found by Western blot analyses between kallistatin and other serpins. Kallistatin inhibits human tissue kallikrein's activity toward kininogen and tripeptide substrates. The second-order reaction rate constant (ka) was determined to be 2.6 x 10(4) M-1 s-1 using Pro-Phe-Arg-MCA. The inhibition is accompanied by formation of an equimolar, heat- and SDS-stable complex between tissue kallikrein and kallistatin, and by generation of a small carboxyl-terminal fragment from the inhibitor due to cleavage at the reactive site by tissue kallikrein. Heparin blocks kallistatin's complex formation with tissue kallikrein and abolishes its inhibitory effect on tissue kallikrein's activity. The amino-terminal residue of kallistatin is blocked. Sequence analysis of the carboxyl-terminal fragment generated from kallistatin reveals the reactive center sequence from P1' to P15', which shares sequence similarity with, but is different from known serpins including protein C inhibitor, alpha 1-antitrypsin, and alpha 1-antichymotrypsin. The results show that kallistatin is a new member of the serpin superfamily that inhibits human tissue kallikrein.  相似文献   
897.
Plasmin inhibited the biosynthesis of tissue-type plasminogen activator (tPA) antigen by human umbilical vein endothelial cells (HUVEC) in a dose-dependent manner. The amount of tPA antigen found in the 24-h conditioned medium of cells treated with 100 nM plasmin for 1 h was 20-30% of that in the control group. However, in contrast to tPA, such treatment led to a 3-fold increase in plasminogen activator inhibitor (PAI) activity, whereas the amount of PAI type 1 antigen was unchanged. The effects of plasmin on HUVEC were binding- and catalytic activity-dependent and were specifically blocked by epsilon-aminocaproic acid. Microplasmin, which has no kringle domains, was less effective in reducing tPA antigen biosynthesis or enhancing PAI activity in HUVEC. Kringle domains of plasmin affected neither tPA antigen nor PAI activity of the cells. Other proteases including chymotrypsin, trypsin, and collagenase at comparable concentrations did not have a significant effect on the biosynthesis of tPA antigen or PAI activity of HUVEC. Thrombin stimulated the biosynthesis of tPA and PAI-1 antigens by HUVEC. Thrombin also stimulated an increase in the protein kinase activity in HUVEC, whereas plasmin inhibited the protein kinase activity of the cells. It is possible that plasmin regulates the biosynthesis of tPA in HUVEC through the signal transduction pathway involving protein kinase.  相似文献   
898.
In lysosomes beta-galactosidase and neuraminidase acquire a stable and active conformation through their association with the protective protein. The latter is homologous to serine carboxypeptidases and has cathepsin A-like activity which is distinct from its protective function towards the two glycosidases. To define signals in the human protective protein important for its intracellular transport, and to determine the site of its association with beta-galactosidase, we have generated a set of mutated protective protein cDNAs carrying targeted base substitutions. These mutants were either singly transfected into COS-1 cells or cotransfected together with wild type human beta-galactosidase. We show that all point mutations cause either a complete or partial retention of the protective protein precursor in the endoplasmic reticulum. This abnormal accumulation leads to degradation of the mutant proteins probably in this compartment. Only the oligosaccharide chain on the 32-kDa subunit acquires the mannose 6-phosphate recognition marker, the one on the 20-kDa subunit seems to be merely essential for the stability of the mature protein. In cotransfection experiments, wild type beta-galactosidase and protective protein appear to assemble already as precursors, soon after synthesis, in the endoplasmic reticulum. Mutated protective protein precursors that are retained in the endoplasmic reticulum or pre-Golgi complex interact with and withhold normal beta-galactosidase molecules in the same compartments, thereby preventing their normal routing.  相似文献   
899.
Carbonic anhydrase (CA) was purified from the saliva of pilocarpine-treated rats by inhibitor-affinity chromatography, and its localization in the rat submandibular gland was studied by the indirect immunoperoxidase technique using a monoclonal antibody (MAb) raised against the enzyme. SDS-polyacrylamide gel electrophoresis of the CA VI gave three bands of 33, 39, and 42 KD. Enzyme digestion experiment showed that the 42 KD molecule was degraded into the 39 KD molecule and the 39 KD molecule into the 33 KD molecule. The cleavage of the 42 KD molecule was independent and that of the 39 KD molecule was dependent on endo-beta-N-acetylglucosaminidase F. The 42 KD molecule was detected in the CA purified from the pilocarpine-treated but not the untreated salivary gland. The MAb recognized all the three components of the enzyme. Immunostaining for CA VI was seen in the cytosol and secretory granules of serous acinar cells and in the duct luminal contents. Staining specific for erythrocyte CA (CA I and CA II) was observed in the cytosol of the epithelial cells of granular, striated, and excretory ducts. Among these duct cells, the agranular varieties in the granular and excretory ducts were essentially devoid of the immunoreactivity.  相似文献   
900.
The major merozoite surface Ag (gp195) of Plasmodium falciparum has been shown to protect monkeys against parasite infection, and gp195-based synthetic peptides and recombinant polypeptides have been evaluated as potential malaria vaccines. A major problem in developing a gp195-based recombinant vaccine has been the difficulty in obtaining a recombinant polypeptide that is immunologically equivalent to the native protein. In this study, the carboxyl-terminal processing fragment (p42) of gp195 was produced in yeast and in a baculovirus recombinant system. Immunologic analyses indicated that the secreted baculovirus p42 (BVp42) expressed native, disulfide-dependent conformational epitopes, whereas these epitopes were poorly represented in the intracellular yeast p42. BVp42, but not yeast p42, was also recognized by the majority of gp195-specific antibodies of animals immunized with purified native gp195, indicating that the anti-gp195 response of these animals was focused on conformational determinants of the p42 processing fragment. Sera against native gp195 of congenic mice of diverse H-2 haplotypes recognized the BVp42 polypeptide, demonstrating that a genetically heterogeneous population is capable of responding to p42 epitopes. BVp42 was highly immunogenic and induced high titers of antibodies that were cross-reactive with purified native gp195 in an ELISA and also reacted with schizonts and merozoites by immunofluorescence. Anti-BVp42 antibodies completely inhibited the in vitro growth of the malaria parasite, whereas anti-yeast p42 antibodies had no effect. These results indicate that native, conformational epitopes of p42 are critical for the induction of gp195-specific, parasite growth-inhibitory antibodies and that the BVp42 polypeptide efficiently induces antibodies specific for these native determinants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号