首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7635篇
  免费   543篇
  国内免费   705篇
  8883篇
  2024年   25篇
  2023年   101篇
  2022年   258篇
  2021年   411篇
  2020年   301篇
  2019年   348篇
  2018年   323篇
  2017年   265篇
  2016年   360篇
  2015年   498篇
  2014年   563篇
  2013年   613篇
  2012年   763篇
  2011年   643篇
  2010年   365篇
  2009年   365篇
  2008年   390篇
  2007年   328篇
  2006年   288篇
  2005年   238篇
  2004年   206篇
  2003年   175篇
  2002年   152篇
  2001年   151篇
  2000年   115篇
  1999年   100篇
  1998年   68篇
  1997年   71篇
  1996年   70篇
  1995年   54篇
  1994年   49篇
  1993年   31篇
  1992年   41篇
  1991年   20篇
  1990年   25篇
  1989年   19篇
  1988年   16篇
  1987年   16篇
  1986年   11篇
  1985年   18篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有8883条查询结果,搜索用时 17 毫秒
31.
Converging evidence indicates that SOD1 aggregation is a common feature of mutant SOD1-linked fALS, and seems to be directly related to the gain-of-function toxic property. However, the mechanism inducing the aggregation is not understood. To study the contribution of oxidative modification of cysteine residues in SOD1 aggregation, we systematically examined the redox state of SOD1 cysteine residues in the G37R transgenic mouse model at different stages of the disease and under oxidative stress induced by H2O2. Our data suggest that under normal circumstance, cysteine 111 residue in SOD1 is free; however, under oxidative stress, it is prone to oxidative modification by providing the thiolate anion (S−). With the progression of the disease, increased levels of oxidative insults facilitated the oxidation of thiol groups of cysteine residues; human mutant SOD1 could generate an upper shift band in reducing SDS-PAGE, which turned out to be a Cys111-peroxidized SOD1 species. We also detected the formation of SOD1 multimers at different stages of the disease, and found that accumulated oxidative stress facilitated the formation of aggregates, which were not mediated by disulfide bond. This oxidative modification of cysteine 111 therefore promotes the formation of disulfide bond-independent aggregation of SOD1.  相似文献   
32.
Kun Guo  Le Kang  Feng Cui 《Insect Science》2017,24(3):431-442
Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large‐scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme–copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin‐converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR‐1‐like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids.  相似文献   
33.
34.
As obligate chemolithotrophs, ammonia-oxidizing bacteria (AOB) grow very slowly and are known to be extremely sensitive to a wide variety of inhibitors. Since it is generally accepted that inhibition of ammonia oxidation by AOB results in a total failure of nitrogen removal, it is necessary to develop a method to detect inhibitors of ammonia oxidation in wastewater. Since ammonia oxidation accompanies oxygen consumption, ammonia oxidation can be easily evaluated by measuring oxygen consumption rate using a dissolved oxygen (DO) probe. In this study, a rapid and simple respirometric biosensor using the pure culture of Nitrosomonas europaea was developed. N. europaea was cultivated in a continuous fermentor operating at the dilution rate of 0.008 h(-1) to obtain physiologically constant cells and was immobilized onto the dialysis membrane through filtration. DO, determined by the biosensor, started to increase 30 s later after ammonia oxidation inhibitor was fed, and a new steady-state DO was obtained in 10-30 min. For this DO profile, steady-state kinetics was applied to evaluate ammonia oxidation efficiency. The concentration of a toxic compound causing 50% decrease of oxygen-consumption activity (EC50) was determined for different chemicals. The EC50 values obtained with the biosensor (0.018 mg l(-1) for allylthiourea, 0.027 mg l(-1) for thioacetamide, 1.10 mg l(-1) for phenol and 0.0 1mg l(-1) for thiourea) indicated that the developed biosensor was highly sensitive to a variety of the inhibitors. It was also shown that the biosensor is applicable for on-line real time monitoring.  相似文献   
35.
Nod, a nonmotile kinesin-like protein, plays a critical role in segregating achiasmate chromosomes during female meiosis. In addition to localizing to oocyte chromosomes, we show that functional full-length Nod-GFP (Nod(FL)-GFP) localizes to the posterior pole of the oocyte at stages 9-10A, as does kinesin heavy chain (KHC), a plus end-directed motor. This posterior localization is abolished in grk mutants that no longer maintain the microtubule (MT) gradient in the oocyte. To test the hypothesis that Nod binds to the plus ends of MTs, we expressed and purified both full-length Nod (Nod(FL)) and a truncated form of Nod containing only the motor-like domain (Nod318) from Escherichia coli and assessed their interactions with MTs in vitro. Both Nod(FL) and Nod318 demonstrate preferential binding to the ends of the MTs, displaying a strong preference for binding to the plus ends. When Nod318-GFP:MT collision complexes were trapped by glutaraldehyde fixation, the preference for binding to plus ends versus minus ends was 17:1. Nod(FL) and Nod318 also promote MT polymerization in vitro in a time-dependent manner. The observation that Nod is preferentially localized to the plus ends of MTs and stimulates MT polymerization suggests a mechanism for its function.  相似文献   
36.
Tumor suppressor PTEN regulates cellular activities and controls genome stability through multiple mechanisms. In this study, we report that PTEN is necessary for the protection of DNA replication forks against replication stress. We show that deletion of PTEN leads to replication fork collapse and chromosomal instability upon fork stalling following nucleotide depletion induced by hydroxyurea. PTEN is physically associated with replication protein A 1 (RPA1) via the RPA1 C-terminal domain. STORM and iPOND reveal that PTEN is localized at replication sites and promotes RPA1 accumulation on replication forks. PTEN recruits the deubiquitinase OTUB1 to mediate RPA1 deubiquitination. RPA1 deletion confers a phenotype like that observed in PTEN knockout cells with stalling of replication forks. Expression of PTEN and RPA1 shows strong correlation in colorectal cancer. Heterozygous disruption of RPA1 promotes tumorigenesis in mice. These results demonstrate that PTEN is essential for DNA replication fork protection. We propose that RPA1 is a target of PTEN function in fork protection and that PTEN maintains genome stability through regulation of DNA replication.  相似文献   
37.
The FtsLB complex is a key regulator of bacterial cell division, existing in either an off state or an on state, which supports the activation of septal peptidoglycan synthesis. In Escherichia coli, residues known to be critical for this activation are located in a region near the C-terminal end of the periplasmic coiled-coil domain of FtsLB, raising questions about the precise role of this conserved domain in the activation mechanism. Here, we investigate an unusual cluster of polar amino acids found within the core of the FtsLB coiled coil. We hypothesized that these amino acids likely reduce the structural stability of the domain and thus may be important for governing conformational changes. We found that mutating these positions to hydrophobic residues increased the thermal stability of FtsLB but caused cell division defects, suggesting that the coiled-coil domain is a “detuned” structural element. In addition, we identified suppressor mutations within the polar cluster, indicating that the precise identity of the polar amino acids is important for fine-tuning the structural balance between the off and on states. We propose a revised structural model of the tetrameric FtsLB (named the “Y-model”) in which the periplasmic domain splits into a pair of coiled-coil branches. In this configuration, the hydrophilic terminal moieties of the polar amino acids remain more favorably exposed to water than in the original four-helix bundle model (“I-model”). We propose that a shift in this architecture, dependent on its marginal stability, is involved in activating the FtsLB complex and triggering septal cell wall reconstruction.  相似文献   
38.
39.
Head and neck squamous cell carcinoma (HNSCC) remains a major health problem worldwide. We aimed to identify a robust microRNA (miRNA)-based signature for predicting HNSCC prognosis. The miRNA expression profiles of HNSCC were obtained from The Cancer Genome Atlas (TCGA) database. The TCGA HNSCC cohort was randomly divided into the discovery and validation cohort. A miRNA-based prognostic signature was built up based on TGCA discovery cohort, and then further validated. The downstream targets of prognostic miRNAs were subjected to functional enrichment analyses. The role of miR-1229-3p, a prognosis-related miRNA, in tumorigenesis of HNSCC was further evaluated. A total of 305 significantly differentially expressed miRNAs were found between HNSCC samples and normal tissues. A six-miRNA prognostic signature was constructed, which exhibited a strong association with overall survival (OS) in the TCGA discovery cohort. In addition, these findings were successfully confirmed in TCGA validation cohort and our own independent cohort. The miRNA-based signature was demonstrated as an independent prognostic indicator for HNSCC. A risk signature-based nomogram model was constructed and showed good performance for predicting the OS for HNSCC. The functional analyses revealed that the downstream targets of these prognostic miRNAs were closely linked to cancer progression. Mechanistically, in vitro analysis revealed that miR-1229-3p played a tumor promoting role in HNSCC. In conclusion, our study has developed a robust miRNA-based signature for predicting the prognosis of HNSCC with high accuracy, which will contribute to improve the therapeutic outcome.  相似文献   
40.
Iron overload is common in elderly people which is implicated in the disease progression of osteoarthritis (OA), however, how iron homeostasis is regulated during the onset and progression of OA and how it contributes to the pathological transition of articular chondrocytes remain unknown. In the present study, we developed an in vitro approach to investigate the roles of iron homeostasis and iron overload mediated oxidative stress in chondrocytes under an inflammatory environment. We found that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis via upregulating iron influx transporter TfR1 and downregulating iron efflux transporter FPN, thus leading to chondrocytes iron overload. Iron overload would promote the expression of chondrocytes catabolic markers, MMP3 and MMP13 expression. In addition, we found that oxidative stress and mitochondrial dysfunction played important roles in iron overload-induced cartilage degeneration, reducing iron concentration using iron chelator or antioxidant drugs could inhibit iron overload-induced OA-related catabolic markers and mitochondrial dysfunction. Our results suggest that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis and promote iron influx, iron overload-induced oxidative stress and mitochondrial dysfunction play important roles in iron overload-induced cartilage degeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号